Loading AI tools
З Вікіпедії, вільної енциклопедії
Параболічна антена — антена, у якій для спрямування радіохвиль використовується параболічний відбивач — вигнута поверхня з поперечним перерізом у формі параболи. Головною перевагою параболічної антени є висока спрямованість. Вона функціонує подібно до рефлектора прожектора чи ліхтарика, щоб направляти радіохвилі у вузький промінь або приймати радіохвилі лише з одного певного напрямку. Параболічні антени мають одні з найвищих коефіцієнтів підсилення, або, що приблизно те ж саме, найменшу ширину променя[en][1][2]. Щоб досягти вузької ширини променя, параболічний відбивач повинен бути набагато більшим, ніж довжина хвилі використовуваних радіохвиль[2], тому параболічні антени використовуються у високочастотній частині радіоспектра, для дециметрових, сантиметрових і мікрохвиль, для яких довжини хвиль достатньо малі, щоб можна було використовувати рефлектори зручного розміру.
Параболічними є антени супутникового телебачення та антени радіотелескопів. Параболічні антени використовуються як направлені антени[en] для зв’язку точка-точка[en] в таких програмах, як мікрохвильові ретрансляційні канали, які передають телефонні та телевізійні сигнали між сусідніми містами, бездротові канали WAN/LAN для передачі даних, супутниковий зв’язок та зв’язок з космічними кораблями. Інше велике застосування параболічних антен — для радіолокаційних антен, яким потрібно передавати вузький промінь радіохвиль для визначення місцезнаходження кораблів, літаків або ракет.
Параболічну антену винайшов німецький фізик Генріх Герц під час відкриття радіохвиль у 1887 році. У своїх історичних експериментах він використовував циліндричні параболічні відбивачі як для передачі, так і для прийому сигналу.
Принцип роботи параболічної антени полягає в тому, що точкове джерело радіохвиль у фокусі параболоїдного відбивача із провідного матеріалу буде відбиватися в майже паралельний промінь хвиль уздовж осі відбивача. І навпаки, плоска хвиля, що надходить паралельно осі, буде сфокусована в точку у фокусі.
Типова параболічна антена складається з металевого параболічного рефлектора з невеликою фідерною антеною, підвішеною перед рефлектором у його фокусі[2] і спрямованою назад на рефлектор. Рефлектор — це металева поверхня, сформована у вигляді параболоїда обертання й зазвичай усічена по колу, яке й визначає діаметр антени[2]. У передавальній антені радіочастотний струм від передавача подається через кабель до фідерної антени, яка перетворює його на радіохвилі. Радіохвилі випромінюються назад до параболоїда фідерною антеною та відбиваються від параболоїда у вигляді паралельного променя. У приймальній антені вхідні радіохвилі відбиваються від антени та збираються в її фокусі, а розташована там приймальна антена перетворює радіохвилі на електричний струм, який далі кабелем передається до радіоприймача.
Відбивач (також званий рефлектором) може бути виготовлений з листового металу або дротяної решітки, і може мати круглу або складнішу форму. Металева сітка відбиває радіохвилі так само ефективно, як суцільна металева поверхня, якщо її отвори менше однієї десятої довжини хвилі, тому для зменшення ваги та вітрового навантаження часто використовуються несуцільні рефлектори. Щоб досягти максимального підсилення, форма антени має бути точною в межах невеликої частки довжини хвилі, щоб гарантувати, що хвилі від різних частин антени надходять у фокус у фазі. Великі рефлектори часто вимагають підтримуючих фермових конструкцій позаду них, щоб забезпечити необхідну жорсткість.
Рефлектор, виготовлений із решітки з паралельних дротів або брусків, орієнтованих в одному напрямку, діє як поляризаційний фільтр. Він відбиває лише лінійно поляризовані радіохвилі з електричним полем, паралельним дротам відбивача. Цей тип антен часто використовується в радіолокаційних антенах. У поєднанні з лінійно поляризованою фідерною антеною це допомагає відфільтрувати шум у приймачі та зменшити похибки.
Блискучий металевий параболічний відбивач може фокусувати й сонячні промені. Параболічна антена, спрямована на сонце, може сконцентрувати достатню кількість сонячної енергії, щоб сильно перегріти розташований у фокусі приймач, тому суцільні відбивачі завжди покривають шаром фарби.
Фідерна антена у фокусі рефлектора зазвичай є антеною з низьким коефіцієнтом підсилення, наприклад напівхвильовим диполем або (частіше) невеликою рупорною антеною, яка називається фідерним рупором. У складніших конструкціях, таких як кассегренівська або грегоріанська, використовується вторинний відбивач, який переправляє енергію від первинного відбивача на фідерну антену. Фідерна антена під’єднана до радіочастотного передавального або приймального обладнання за допомогою коаксіального кабелю або хвилеводу.
На мікрохвильових частотах, які використовуються в багатьох параболічних антенах, для проведення мікрохвиль між фідерною антеною та передавачем або приймачем потрібен хвилевід. Через високу вартість хвилеводів у багатьох параболічних антенах безпосередньо на фідерній антені розташована електроніка, яка перетворює прийнятий сигнал на сигнал нижчої проміжної частоти, який вже йде до приймача через дешевший коаксіальний кабель. Такий перетворювач називається понижувальним конвертером. Подібним чином, у фокусі передавальної антени може бути розташований мікрохвильовий передавач.
Однією з переваг параболічної антени є те, що більша частина її конструкції (усе, окрім фідерної антени) є нерезонансною, тому вона може працювати в широкому діапазоні частот (тобто в широкій смузі пропускання). Все, що необхідно для зміни частоти роботи, це замінити фідерну антену на таку, яка працює на потрібній частоті. Деякі параболічні антени передають або приймають на кількох частотах, маючи кілька фідерних антен, встановлених у фокусі, близько одна від одної.
Параболічні антени розрізняють за формами:
Параболічні антени також розрізняють за типом живлення, тобто за тим, як на антену подають радіохвилі[3]:
Діаграма спрямованості фідерної антени має бути адаптована до форми відбивача, оскільки вона сильно впливає на ефективність апертури, яка визначає коефіцієнт підсилення антени. Випромінювання від джерела, яке падає за межі відбивача, називається переливанням і втрачається, зменшуючи підсилення та збільшуючи бічні пелюстки, а в приймальних антенах також підвищуючи сприйнятливість до шуму й таким чином спричиняючи завади. Максимальне підсилення досягається тоді, коли тарілку рівномірно освітлено постійною напруженістю поля до її країв. Тому ідеальною діаграмою спрямованості фідерної антени була б постійна напруженість поля по всьому тілесному куту тарілки, яка різко падає до нуля на краях. Однак реальні фідерні антени мають діаграми спрямованості, які поступово спадають на краях, тому фідерна антена є компромісом між прийнятно низьким переливанням і адекватним освітленням. Для більшості фідерів оптимальне освітлення досягається, коли потужність біля краю відбивача на 10 дБ менша, ніж максимальне значення в його центрі[5].
Діаграми електричних і магнітних полів, створюваних параболічною антеною, є просто збільшеним зображенням полів, які випромінює фідерна антена, тому поляризація визначається фідерною антеною. Щоб досягти максимального підсилення, обидві фідерні антени (передавальна та приймальна) повинні мати однакову поляризацію[6]. Наприклад, вертикальна дипольна фідерна антена випромінює промінь радіохвиль з вертикальним електричним полем, що називається вертикальною поляризацією. Для їх прийому приймальна фідерна антена також повинна мати вертикальну поляризацію. Якщо в цьому випадку проводити спостереження на горизонтальній поляризації, прийнята потужність сигналу сильно зменшиться.
Щоб збільшити швидкість передачі даних, деякі параболічні антени передають на двох окремих радіоканалах на одній частоті з ортогональною поляризацією, використовуючи окремі фідерні антени, - це називається антеною подвійної поляризації. Наприклад, сигнали супутникового телебачення передаються із супутника по двох окремих каналах на одній частоті з використанням правої та лівої кругової поляризації. У домашній супутниковій антені вони приймаються двома маленькими монопольними фідерними антенами, орієнтованими під прямим кутом. Кожна антена підключається до окремого приймача.
Якщо сигнал з одного поляризаційного каналу приймається протилежно поляризованою антеною, це спричиняє перехресні завади, що погіршує співвідношення сигнал/шум. Здатність антени зберігати ці ортогональні канали розділеними вимірюється параметром, який називається перехресною поляризаційною дискримінацією (cross polarization discrimination). У передавальній антені перехресна поляризаційна дискримінація – це частка потужності антени однієї поляризації, що випромінюється в іншій поляризації. Наприклад, через незначні недосконалості антена з вертикально поляризованою фідерною антеною буде випромінювати невелику кількість своєї потужності в горизонтальній поляризації, - ця частка є перехресною поляризаційною дискримінацією. У приймальній антені перехресна поляризаційна дискримінація — це відношення потужності сигналу, прийнятого на протилежній поляризації, до потужності, прийнятої тією самою антеною на правильній поляризації, коли антена освітлюється двома ортогонально поляризованими радіохвилями однакової потужності. Якщо система антени має погану перехресну поляризаційну дискримінацію, для зменшення перехресних завад часто можна використовувати алгоритми цифрової обробки сигналу із заглушенням перехресної поляризації.
В кассегренівській та грегоріанській антенах наявність двох відбивних поверхонь на шляху сигналу надає додаткові можливості для покращення ефективності антени. Коли потрібна найвища ефективність, можна використовувати техніку, звану подвійним відбивачем. Вона включає зміну форми вторинного відбивача, щоб направити більше потужності сигналу на зовнішні області головного відбивача й досягти максимально рівномірного його освітлення, щоб максимізувати підсилення. Однак це означає, що вторинний відбивач вже не є точно гіперболічним (хоча все ще дуже близький до гіперболічної форми), і постійність фази втрачається. Цю фазову помилку, однак, можна компенсувати, трохи змінивши форму головного відбивача. В результаті вдається досягти вищого коефіцієнту підсилення або меншого переливання, але ціною поверхонь, складніших для виготовлення та перевірки[7][8]. Також можна досягати інших схем освітлення головного відбивача, наприклад, з центральним отвором для зменшення затінення променя вторинним відбивачем.
Спрямованість антени вимірюється безрозмірним параметром, званим її коефіцієнтом підсилення. Він визначається як відношення потужності, отриманої антеною від джерела вздовж осі її променя, до потужності, отриманої гіпотетичною ізотропною антеною. Коефіцієнт підсилення параболічної антени становить[9]
де:
Можна побачити, що, як і у випадку з будь-якою апертурною антеною, чим більша апертура порівняно з довжиною хвилі, тим вище підсилення. Коефіцієнт підсилення збільшується разом із квадратом відношення ширини апертури до довжини хвилі, тому великі параболічні антени, наприклад, використовувані для зв’язку космічних кораблів і радіотелескопів, можуть мати надзвичайно високий коефіцієнт підсилення. Застосовуючи наведену вище формулу до антен діаметром 25 метрів, які часто використовуються в решітках радіотелескопів і супутникових наземних антенах на довжині хвилі 21 см (1,42 ГГц), отримуємо максимальне підсилення приблизний в 140 000 разів або приблизно на 52 дБ (децибелів над ізотропним рівнем). Найбільшою параболічною антеною у світі є радіотелескоп FAST на південному заході Китаю, ефективна апертура якого становить близько 300 метрів. Коефіцієнт підсилення цієї антени на 3 ГГц становить приблизно 90 мільйонів, або 80 дБ.
Ефективність апертури eA є основною змінною, яка враховує різні втрати, що зменшують підсилення антени від максимального, якого можна було б досягти за даної апертури. Основними факторами, що знижують ефективність апертури параболічних антен, є[10]
У параболічних антенах практично вся випромінювана потужність зосереджена у вузькій головній пелюстці вздовж осі антени. Решта потужності випромінюється в бічних пелюстках, зазвичай набагато менших за головну. Оскільки апертура рефлектора параболічних антен набагато більша за довжину хвилі, дифракція зазвичай викликає багато вузьких бічних пелюсток, і діаграма цих бічних пелюсток є складною. Також зазвичай є зворотня пелюстка, у протилежному напрямку від основної пелюстки, через випромінювання фідерної антени, яке не влучає у відбивач.
Кутова ширина променя, випромінюваного антенами з високим коефіцієнтом підсилення, вимірюється шириною променя на половинній потужності, яка є кутовою відстанню між точками на діаграмі спрямованості антени, в яких потужність падає до половини (-3 дБ) від свого максимального значення. Для параболічних антен ширина променя на половинній потужності θ визначається як[5][11]
де k — коефіцієнт, який слабко залежить від форми відбивача та схеми подачі сигналу. Для ідеального рівномірно освітленого параболічного відбивача та θ, вираженого у градусах, k буде 57,3 (кількість градусів у радіані). Для типової параболічної антени k становить близько 70[11].
Для типової 2-метрової супутникової антени, що працює в C- діапазоні (4 ГГц), ця формула дає ширину променя приблизно 2,6°. Для антени радіотелескопа Аресібо на частоті 2,4 ГГц ширина променя становить 0,028°. Оскільки параболічні антени можуть створювати дуже вузькі промені, їхнє наведення може бути проблематичним. Деякі параболічні антени оснащені прицілом, щоб їх можна було точно навести на іншу антену.
Між підсиленням і шириною променя існує обернена залежність. Поєднавши рівняння для ширини променя з рівнянням для підсилення, можна отримати співвідношення[11]
Випромінювання від великого параболоїда з рівномірно освітленою апертурою по суті еквівалентне випромінюванню від круглої апертури такого ж діаметра у нескінченній металевій пластині, на яку падає однорідна плоска хвиля[12].
Діаграму поля випромінювання можна розрахувати, застосовуючи принцип Гюйгенса до такої прямокутної апертури. Картину електричного поля можна знайти, обчисливши інтеграл дифракції Фраунгофера по круглій апертурі. Його також можна визначити за допомогою зон Френеля[13].
де . Використовуючи полярні координати, і . Враховуючи симетрію
і використовуючи функції Бесселя першого порядку, отримуємо картину електричного поля ,
де - діаметр апертури антени в метрах, - довжина хвилі в метрах, - кут від осі симетрії антени у радіанах, як показано на рисунку, а - функція Бесселя першого порядку. Визначення перших нулів діаграми спрямованості дає ширину променя . Оскільки для , то
.
Коли апертура велика, кут дуже маленький, тому приблизно дорівнює . Це дає таку загальну формулу для ширини променя[12]:
Ідея використання параболічних рефлекторів для радіоантен була взята з оптики, де здатність параболічного дзеркала фокусувати світло в пучок була відома ще з часів античності. Конструкції деяких конкретних типів параболічних антен, таких як кассегренівська та грегоріанська антени, походять від аналогічних типів телескопів-рефлекторів[14][2].
Першу в світі параболічну рефлекторну антену сконструював у 1888 році німецький фізик Генріх Герц[2]. Антена являла собою циліндричний параболічний відбивач, виготовлений з листового цинку й підтримуваний дерев'яною рамою, а його фідерною антеною служив розташований вздовж фокальної лінії 26-сантиметровий диполь, збуджуваний від іскрового проміжку. Антена мала апертуру 2 м у висоту і 1,2 м в ширину, з фокусною відстанню 0,12 метра, і працювала на частоті близько 450 МГц. Маючи дві такі антени, одну для передачі, а іншу для прийому, Герц продемонстрував існування радіохвиль, які за 22 роки перед тим теоретично передбачив Джеймс Клерк Максвелл[15]. На ранньому етапі застосування радіо обмежувалося низькими частотами, незручними для використання параболічних антен. Параболічні антени стали поширюватись тільки із закінченням Другої світової війни, коли стали використовувати мікрохвильові частоти.
Італійський піонер радіо Гульєльмо Марконі використовував параболічний рефлектор у 1930-х роках у дослідженнях УВЧ-передач зі свого човна в Середземному морі[14]. У 1931 році був продемонстрований мікрохвильовий релейний телефонний зв’язок через Ла-Манш на частоті 1,7 ГГц за допомогою 3-метрової параболічної антени[14]. Першу велику параболічну антену діаметром 9 м побудував у 1937 році на своєму задньому дворі піонер радіоастрономії Гроте Ребером[2], і проведене ним дослідження неба стало однією з подій, які започаткували галузь радіоастрономії[14].
Розвиток радіолокації під час Другої світової війни дав великий поштовх дослідженням параболічних антен.Зокрема, були досліджені антени, у яких діаграма спрямованості мала спеціальну форму, відрізняючись у вертикальному та горизонтальному напрямках[14]. Після війни були побудовані радіотелескопи з дуже великими параболічними антенами. 100-метровий Грін-Бенкський радіотелескоп зараз є найбільшою у світі повністю рухомою параболічною антеною.
У 1960-х роках параболічні антени почали широко використовуватися в наземних мікрохвильових ретрансляційних мережах зв’язку для міжконтинентальної передачі телефонних дзвінків та телевізійних програм[14]. Перша параболічна антена, яка використовується для супутникового зв'язку, була побудована в 1962 році в Гунгіллі в Корнуоллі, Англія, для зв'язку з супутником Telstar. Кассегренівська антена була розроблена в Японії в 1963 році компаніями NTT, KDDI і Mitsubishi Electric[16]. Поява в 1970-х роках комп’ютерних інструментів проєктування, таких як NEC, здатних обчислювати діаграму спрямованості параболічних антен, призвела до розробки складних асиметричних конструкцій з кількома рефлекторами та кількома фідерами.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.