Тор — геометричне тіло, що утворюється обертанням кола навколо осі, котра лежить у одній площині з колом, але не перетинає його. Форма тора зовні нагадує бублик.
Геометрія
Рівняння тора не складно отримати, перейшовши від декартових координат з початком в центрі тора (радіус-вектор ) до кутів та , що описують обертання навколо осей тора, як зображено на Рис. 2. В результаті має місце параметричне рівняння:
Тут , R — відстань від центру кола до осі обертання, r — радіус кола.
Не параметричне рівняння в декартових координатах і з тими ж радіусами має четвертий степінь:
Площа поверхні тора A та його об'єм V визначаються за формулами:
Ці формули точно збігаються з формулами для площі та об'єму циліндра з висотою та радіусом r, який утворюється при розрізанні тора та випрямленні його вздовж лінії, що проходить через центр труби. Втрати площі та об'єму на внутрішньому боці тора точно компенсуються збільшенням площі та об'єму на зовнішньому боці.
Топологія
З топологічного погляду тор — це замкнута поверхня, яка визначається як добуток двох кіл: S¹ × S¹.
Фундаментальною групою тора є прямий добуток фундаментальних груп кола:
Інтуїтивно це означає, що траєкторія, що спочатку обходить «дірку» тора (нехай для сталого кута p), а потім його тіло (нехай для сталого кута t) може бути деформована у траєкторію, що спочатку обходить тіло тора, а потім — дірку. Таким чином, обходи тора «по широті» та «по довготі» комутують.
Тор є поверхнею повноторія (заповненого тора).
n-вимірний тор
Застосування
- Поняття тора широко застосовується в теорії динамічних систем, а також у теорії КАМ. Зокрема, динаміка інтегровної гамільтонової системи відбувається на інваріантних торах у фазовому просторі системи.
- В електро- та радіотехніці використовується тороїдальний трансформатор (схеми примножувачів напруги, відхилення променів ЕПТ, тощо).
Див. також
Посилання
- Тор // Термінологічний словник-довідник з будівництва та архітектури / Р. А. Шмиг, В. М. Боярчук, І. М. Добрянський, В. М. Барабаш ; за заг. ред. Р. А. Шмига. — Львів, 2010. — С. 194. — ISBN 978-966-7407-83-4.
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.