Тензор кривини

З Вікіпедії, вільної енциклопедії

Тензор Рімана (тензор внутрішньої кривини многовида) з'являється при розгляді комутатора коваріантних похідних коваріантного вектора (дивіться статтю Диференціальна геометрія)

Деякі тотожності

Узагальнити
Перспектива

Замість коваріантних компонент можна підставити базисні вектори :

І враховуючи, що коваріантна похідна від базисних векторів дорівнює векторам повної кривини (дивіться Прості обчислення диференціальної геометрії), маємо:

Домножимо формулу (3) скалярно на , i врахуємо ортогональність векторів кривини до многовиду: . В результаті одержуємо формулу для коваріантних компонент тензора Рімана:

або після зміни знаку і перейменування індексів:

Як можна побачити з останнього рівняння (в скалярних добутках індекси і переставлені), тензор Рімана антисиметричний за першою парою індексів і за другою парою індексів (при перестановці зменшуване і від'ємник у правій частині формули (4) міняються місцями):

Також легко бачити, що тензор Рімана не змінюється при перестановці першої пари індексів з другою парою індексів (при перестановці у множниках зменшуваного індекси переставляються, але оскільки величини симетричні за індексами, то скалярний добуток зменшуваного не зміниться; у від'ємнику аналогічно, але співмножники в скалярному добутку міняються місцями, що не впливає на результат):

Згортка тензора Рімана за першим і третім індексами (або, що еквівалентно, за другим і четвертим індексами) дає симетричний тензор другого рангу , який називається тензором Річчі:

Тензор Річчі симетричний:

Тензор Річчі можна також згорнути за індексами, одержавши скалярну кривину:

Враховуючи (4), маємо:

Комутатор для контраваріантного векора одержуємо, піднявши індекс у формулі (1):

Оскільки комутатор коваріантних похідних діє на добуток тензорів за правилом диференціального оператора:

то ми можемо, користуючись формулами (1) і (11), обчислити дію комутатора коваріантних похідних на тензор, який є добутком векторів.

Але довільний тензор можна представити лінійною комбінацією таких елементарних тензорів, тому при дії комутатора на довільний тензор з будь-якою кількістю верхніх та нижніх індексів, маємо:


Тензор Рімана задовольняє дві тотожності Біанкі:

Алгебраїчна тотожність Біанкі (циклічна перестановка індексів ):

Диференціальна тотожність Біанкі (циклічна перестановка індексів ):

Алгебраїчна тотожність Біанкі

Тензор Рімана задовольняє наступну тотожність:

яка називається алгебраїчною тотожністю Біанкі.

Варіанти запису алгебраїчної тотожності Біанкі

Оскільки тензор Рімана має дві антисиметричні пари індексів (тензор змінює знак на протилежний при перестановці двох індексів всередині кожної з пар), причому тензор симетричний при перестановці місцями самих пар, то ми можемо, наприклад поміняти місцями перші два індекса. Одержуємо (змінивши знак):

Якщо тепер поміняти місцями пари індексів, то матимемо:

Всі ці тотожності еквівалентні, і словами їх можна описати так: фіксуємо один з індексів тензора Рімана, а з трьох решти індексів утворююємо три циклічні перестановки. Сума компонент тензора Рімана з одержаними трьома наборами індексів дорівнює нулю.

Інші варіанти одержуються при підніманні одного чи декількох індексів, наприклад:

Підготовка доведення

Нехай ми маємо величину з трьома індексами яка симетрична по двох індексах (наприклад по двох перших індексах):

З неї ми можемо скласти іншу величину, яка буде антисиметрична по останніх двох індексах, за наступною формулою:

Тоді легко перевірити, що сума компонент при циклічних перестановках індексів дорівнює нулю:

Цей хід викладок не зміниться, якщо величина матиме більшу кількість індексів, які проте в перестановках не беруть участі.

Доведення виходячи із представлення через символи Крістофеля

Запишемо тензор Рімана через символи Крістофеля:

Якщо ми позначимо:

то

і рівність (4) збігається з алгебраїчною тотожністю Біанкі (1).

Доведення виходячи із представлення через вектори повної кривини

Запишемо тензор Рімана:

В цьому випадку

а далі все аналогічно попереднім викладкам.

Доведення через коваріантні похідні

Нехай и маємо довільне скалярне поле . Введемо наступні позначення для коваріантних похідних цього поля першого та другого порядку:

Зазначимо, що друга похідна є симетричним тензором внаслідок перестановочності частинних похідних та симетрії символів Крістофеля.

Тоді згортка тензора Рімана з градієнтом дорівнює:

В цьому випадку:

і ми одержуємо тотожність:

Оскільки функція довільна, ми можемо взяти її рівній одній з координат ( — фіксований індекс):

Підставляючи (15) в (14) одержуємо (з точністю до позначень індексів) алгебраїчну тотожність Біанкі (1).

Антисиметризація тензора Рімана

Використовуючи тензор тензор метричної матрьошки, можна для довільного тензора -рангу скласти наступний антисиметричний по всіх індексах тензор:

Очевидно, що антисиметричний тензор залишається незмінним після проведення процедури антисиметризації.

Застосуємо антисиметризацію до тензора Рімана:

При розкриванні визначника ми одержимо 24 доданка по перестановках індексів , причому парні перестановки будуть зі знаком «плюс», а непарні — зі знаком «мінус»:

Усього в формулі (18) буде вісім груп доданків по три доданки в кожній. Враховуючи симетрії тензора Рімана легко бачити, що всі ці вісім груп однакові (із врахуванням знаків). Тому одержуємо:

Тепер алгебраїчну тотожність Біанкі можна словами описати так: антисиметризація тензора Рімана дорівнює нулю.

Кількість лінійно незалежних компонент внутрішньої кривини

Якщо  — розмірність многовида, то кількість комбінацій в антисиметричній парі індексів дорівнює:

Оскільки тензор Рімана симетричний щодо перестановки пар індексів, то його компоненти записуються (з точністю до знаку) через таку кількість різних чисел:

Але ці числа пов'язані лінійними залежностями, які слідують з алгебраїчної тотожності Біанкі. Кількість цих рівнянь, як легко бачити з формули (19), дорівнює кількості істотно різних компонент антисиметричного тензора четвертого рангу :

(зауважимо, що формула (22) дає правильний результат, тобто нуль, тоді коли )

Отже кількість лінійно незалежних компонент тензора Рімана дорівнює різниці:

Звичайно, формула (23) дає тільки максимально можливу кількість лінійно незалежних компонент тензора Рімана для даної розмірності многовида. А для конкретних многовидів ця кількість може бути меншою. Наприклад для плоского простору ця кількість дорівнює нулю, а для гіперповерхні в системі координат головних напрямків, маємо для індексів формулу:

а отже кількість лінійно незалежних компонент не перевищує кількості комбінацій з по 2, тобто:

Зв'язок з іншими властивостями внутрішньої кривини

Внаслідок алгебраїчної тотожності Біанкі, внутрішня кривина многовида повністю визначається за значеннями наступної квадратичної форми від бівекторів :

Також з алгебраїчною тотожністю Біанкі пов'язана можливість альтернативного погляду на внутрішню кривину через Симетричний тензор внутрішньої кривини.


Диференціальна тотожність Біанкі

Тензор Рімана задовольняє наступну тотожність:

яка називається диференціальною тотожністю Біанкі.

Доведення з використанням спеціальної системи координат

Достатнньо вибрати на многовиді якусь одну довільну точку і довести рівність (1) у цій точці. Оскільки точка довільна, то звідси слідуватиме справедливість тотожності (1) на всьому многовиді.

В точці ми можемо вибрати таку спеціальну систему координат, що всі символи Крістофеля (але не їхні похідні) перетворюються в нуль в точці (див. статтю Майже декартові координати в точці многовида). Тоді для коваріантних похідних в точці маємо:

Оскільки

то в точці маємо:

Циклічно переставляючи в (4) індекси одержимо ще дві рівності:

Легко бачити, що при додаванні рівностей (4), (5) і (6) в лівій частині рівняння буде вираз (1), а в правій, врахувавши комутативність частинних похідних, усі доданки взаємно знищаться і ми одержимо нуль.

Існування декартової системи координат

Узагальнити
Перспектива
Якщо існує декартова система координат, то

Якщо на многовиді існує декартова система координат (в якій метричний тензор дорівнює одиничній матриці ), то в цій системі координат всі похідні метричного тензора , а отже і всі символи Крістофеля тотожно дорівнюють нулю:

Отже і всі компоненти тензора Рімана в декартовій системі координат дорівнюють нулю:

Але оскільки тензор Рімана при переході в іншу систему координат перетворюється по тензорним правилам:

то він дорівнює нулю в будь-якій іншій системі координат на цьому многовиді.

Якщо , то можна побудувати декартову систему координат

Нехай тензор Рімана тотожно дорівнює нулю в деякій зв'язній області многовида. Візьмемо довільну точку в межах цієї області - ця точка буде початком нашої майбутньої декартової системи координат. В точці виберемо якийсь ортонормований базис - вектори цього базису будуть задавати додатні напрямки координатних осей майбутньої системи координат.

Розглянемо один із векторів базису, який поки що для простоти позначимо буквою (взагалі-то кількість базисних векторів , і треба було б позначити індексом, який із базисних векторів ми розглядаємо; але поки ми зосередимося на побудові однієї координати).

Користуючись паралельним перенесенням починаючи з точки , в кожній точці області многовида побудуємо вектор, паралельний вектору . Результат перенесення не залежить від шляху переносу (оскільки тензор Рімана дорівнює нулю), а залежить тільки від кінцевої точки. Таким чином ми одержали в нашій області векторне поле:

яке до того ж є постійним стосовно коваріантного диференціювання, тобто справедливі рівності:

З останнього рівняння, враховуючи означення коваріантної похідної і симетрію символів Крістофеля, знаходимо:

Тепер, оскільки

То вектор є градієнтом деякої скалярної функції :

Функцію в якійсь точці області многовида можна обчислити через інтеграл по кривій, що сполучає початок координат і точку :

причому результат інтегрування не залежить від кривої (внаслідок формули Стокса і рівності (5)).

Функція і буде однією з координат. Тепер повернемося до інших векторів базису, цього разу уже пронумеруємо ці вектори індексом, взятим у дужки. Так само для кожного такого вектора побудуємо в нашій області відповідне постійне векторне поле, яке є градієнтом відповідної координати:

Оскільки паралельне перенесення групи векторів зберігає скалярні добутки між ними, а в початку координат ці скалярні добутки дорівнюють одиничній матриці, то в усій області маємо:

тобто координати є декартовими.

Погляд із охоплюючого евклідового простору

Узагальнити
Перспектива

Розглянемо рівність:

в якійсь точці многовиду, і дві геодезичні лінії, що проходять через цю точку, але в різних напрямках. Кривини цих геодезичних дорівнюють:

Тепер домножимо (10) на добуток , одержимо:

Висновок - кривини всіх геодезичних напрямлені приблизно в один бік, многовид не має сідлових точок, в яких би різні геодезичні викривлялися в протилежні боки.

Див. також

Література

Wikiwand - on

Seamless Wikipedia browsing. On steroids.