Loading AI tools
З Вікіпедії, вільної енциклопедії
Кароліна Мері Серіс (англ. Caroline Mary Series; нар. 24 березня 1951, Оксфорд)[7] — британська вчена, математик, учасниця Лондонського королівського товариства (FRS), член Лондонської Математичної Спільноти (LMS) заслужений професор (Emeritus Professor) математики в університеті Ворика. Відома своїми напрацюваннями у роботі з гіперболічної геометрії, Кляйнових груп та динамічних систем, зокрема символічного кодування геодезії у моделях гіперболічної геометрії та новими внесками у вивчення тривимірних гіперболічних колекторів через їх фрактальні граничні набори. Розробила методи, які дозволяють обчислити локус дискретності параметризованого сімейства карт Мебіуса[8]. Зокрема, її наукові математичні дослідження описані в книзі «Перли Індри. Бачення Фелікса Кляйна» (англ. «Indra’s Pearls:The Vision of Felix Klein»), опублікованій у співавторстві з Девідом Мамфордом (англ. David Mumford) та Девідом Райтом (англ. David Wright) у 2002 році [9].
Кароліна Серіс | |
---|---|
Народилася | 24 березня 1951 (73 роки) Оксфорд, Велика Британія |
Країна | Велика Британія |
Національність | англійка |
Діяльність | математикиня, викладачка університету |
Галузь | математика[1], теорія груп[1] і гіперболічна геометрія[1] |
Відома завдяки | математичним дослідженням гіперболічної геометрії, Кляйнових груп, 3-ох вимірних колекторів |
Alma mater | Оксфордський університет (B.A.)), Гарвардський університет (Ph.D) |
Науковий ступінь | заслужений професор (Emeritus Professor) |
Науковий керівник | Джордж Макі |
Відомі учні | Raquel Agueda Mated[2] |
Знання мов | англійська[1] |
Заклад | Університет Ворика |
Членство | Європейська академія[3], Лондонське королівське товариство[4] і Американське математичне товариство[5][6] |
Посада | лектор, редактор, професор, заслужений професор (емерит). |
Батько | Джордж Серіс |
Мати | Анетта Серіс (Пеппер) |
Нагороди | |
Сайт | Caroline Series |
Кароліна Серіс народилась 24 березня 1951 року в Оксфорді в сім'ї Анетти і Джорджа Серісів. Батько Кароліни, Джордж Вільям Серіс, був британським фізиком, відомим своєю роботою з оптичної спектроскопії атомів водню. У 1971 році став членом Королівського товариства (FRS), а у 1972 році — Королівського астрономічного товариства (англ. Royal Astronomical Society). У 1982 році він отримав нагороду Вільяма Ф. Меггерса і медаль Оптичного товариства Америки (англ. Optical Society of America)[10][11].
Окрім Кароліни, у подружжя Серісів є троє синів — Роберт, Джон та Г'ю. Племінником Кароліни Серіс є Роберт Едвард Серіс Бейджен (англ. Robert Edward Series Baigent, Bertie Baigent) — британський диригент, композитор та органіст.
Кароліна Серіс навчалася в Оксфордській середній школі для дівчат, а вже з 1969 року розпочала навчання в коледжі Сомервілль Оксфордського університету. У 1972 році отримала ступінь бакалавра з математики і була удостоєна на право отримати університетську математичну премію. З того ж таки 1972 року , навчається в Гарвардському Університеті, отримуючи стипендію Джона Фіцджеральда Кеннеді. 1976 року здобула науковий ступінь доктора філософії під керівництвом Джорджа Вайтлоу Маккея (англ. George Whitelaw Mackey) за працю Ергодичність груп (англ. Ergodicity of product groups).[12]
У 1976—1977 роках Кароліна Серіс працює лекторкою в Каліфорнійському університеті, Берклі. У 1977—1978 роках — Старша наукова співробітниця (Research fellow) у Ньюгемському коледжі, та Старша наукова співробітниця Кембриджа. З 1978 року працює у Університеті Ворика.
У 1986 році, спільно з Боділ Бранер (англ. Bodil Branner), Гудрун Кальмбах (англ. Gudrun Kalmbach), Мері Франсуа-Рой (англ. Marie-Francoise Roy) та Доною Штросс (англ. Dona Strauss) заснувала організацію Європейських жінок у математиці (англ. European Women in Mathematics (EWM)). Кароліна відіграє центральну роль у створенні організаційної та правової інфраструктури організації. Вона організувала III засідання організації ЕВМ у Ворику в 1988 році. Також вона ініціює заходи як на місцевому, так і на національному рівні, включаючи День математики Британських жінок, запроваджений Комітетом жінок з математики Лондонської Математичної Спільноти (англ. LMS). Також Кароліна Серіс була одним із організаторів 13-ї загальної зустрічі ЕВМ у Кембриджі, Велика Британія, у вересні 2007 року.
У 2007 році Кароліна заявила[13]:
Зустріч ЕВМ цього вересня в Кембриджі була особливим заходом, що відзначив 21-ий день народження ЕВМ. Я була дуже рада зустріти стільки нових і цікавих людей, серед них Дусанку, яка дуже наполегливо працювала над створенням цієї галереї портретів. Це дасть нам усім шанс познайомитися та обмінятися ідеями набагато легше, ніж раніше. Замість того, щоб писати щось зараз, я думала, що поділюся з вами довгим інтерв'ю зі мною, яке було зроблено журналом «Математика сьогодні»
Оригінальний текст (англ.) The EWM meeting this September in Cambridge was a special occasion, marking the 21st birthday of EWM. I was very happy to meet so many new and interesting people, among them Dusanka who has been working very hard setting up this gallery of portraits. It will give us all a chance to get to know each other and exchange ideas much more easily than before. Rather than write anything now, I thought I would share with you a long interview with me which was done by the magazine Mathematics Today |
Працюючи в, тому ж таки, Університеті Ворика як лекторка та редакторка (з 1978 р.), згодом проявила себе як професорка (1992-2014). З 2015 року отримала звання заслуженого професора (англ. Emeritus Professor).
Кароліна дала інтерв'ю в IMS в Сінгапурі, яке отримало назву «Кароліна Мері Серіс: Перлина гіперболічних колекторів» (2013) (англ. Caroline Mary Series : Pearl of hyperbolic manifolds), а також знялась у фільмі «Мислимо просторово» (англ. Thinking Space)[14][15] про те, як математики думають і працюють, на замовлення Лондонської Математичної Спільноти (LMS) до їх 150-річчя. У 2015 році посіла посаду першого заступника голови Комітету з математики Міжнародного математичного союзу (IMS) [16].
Серед досягнень Кароліни Серіс, варто відзначити її книгу «Перли Індри: Бачення Фелікса Кляйна» (англ. Indra’s Pearls:The Vision of Felix Klein), опублікованій у співавторстві з Девідом Мамфордом (англ. David Mumford) та Девідом Райтом (англ. David Wright) у 2002 році. У книзі досліджуються закономірності, створені ітераційними конформальними картами комплексної площини, більш відомими як перетворення Мебіуса, та їх зв’язки із симетрією. Ці закономірності досліджувались також німецьким математиком Феліксом Кляйном, але лише сучасна комп’ютерна графіка дозволяє їх повністю візуалізувати та детально вивчити.
Цікавим є факт, що за словами Девіда Мамфорда, одного зі співавторів, це книга про серйозну математику, розрахована насамперед для "нематематиків".Це опис дослідження сімейства симетричних, але нескінченно заплутаних множин, частина сучасного дослідження того, як хаос розвивається з порядку, з дуже простих правил, створюючи складну складність у кожному масштабі від дуже великого до дуже малого [18].
Назва книги стосується намиста божества індуїстського пантеону Індри, метафоричного об'єкта, описаного в буддійському тексті Квіткової гірлянди Сутри. Намисто Індри складається з нескінченного масиву перлин [19]. Таким чином, утворюється рефлексія рефлексії, і процес цей триває безупинно[20]. У передумові Перлин Індри цитується такий опис:
У блискучій поверхні кожної перлини відзеркалюються всі інші перлини ... У кожному відображенні безкінечно відображаються інші перлини, так що цей процес триває безкінечно.
Оригінальний текст (англ.)
'In the glistening surface of each pearl are reflected all the other pearls ... In each reflection, again are reflected all the infinitely many other pearls, so that by this process, reflections of reflections continue without end. |
Алюзія на "бачення" Фелікса Кляйна - це посилання на ранні дослідження Кляйна групи Шоткі (Фрідріх Герман Шоткі) та накреслені вручну сюжети їх граничних наборів. Це також стосується більш широкого бачення Кляйна щодо зв'язків між теорією груп, симетрією та геометрією.[21]
Зміст Перл Індри:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.