Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
ภาวะ Tetrachromacy เป็นภาวะที่มีทางประสาทต่างหาก 4 ทางในการส่งข้อมูลเกี่ยวกับสี หรือมีเซลล์รูปกรวย 4 ประเภทในตา สัตว์ที่มีภาวะ Tetrachromacy เรียกว่า tetrachromat
ในสัตว์ประเภท tetrachromat การเห็นสีต่าง ๆ จะมี 4 มิติ ซึ่งหมายความว่า เพื่อที่จะเทียบสีที่สัตว์เห็น จะต้องใช้การผสมรวมกันของแม่สีอย่างน้อย 4 สี
นกหลายประเภทเป็น tetrachromat[2] และแม้แต่สปีชีส์ต่าง ๆ ของปลา สัตว์สะเทินน้ำสะเทินบก สัตว์เลื้อยคลาน และแมลง ก็เป็น tetrachromat ด้วย[3]
คำอธิบายปกติสำหรับภาวะ tetrachromacy ก็คือ เรตินาของสัตว์นั้นมีตัวรับแสง (photoreceptor) ความเข้มสูงสี่ประเภท (ซึ่งเรียกว่าเซลล์รูปกรวยในสัตว์มีกระดูกสันหลัง ไม่ใช่เซลล์รูปแท่งซึ่งเป็นตัวรับแสงความเข้มต่ำ) ซึ่งกลืนแสงในสเปกตรัมต่าง ๆ กัน นี่หมายความว่า สัตว์อื่นอาจจะเห็นสีมีความยาวคลื่นที่เกินไปจากที่มนุษย์มองเห็น และอาจสามารถแยกแยะสีต่าง ๆ ที่ปรากฏเป็นสีเดียวกันในมนุษย์ สัตว์สปีชีส์ที่มีการเห็นสีแบบ tetrachromatic จะได้เปรียบกว่าสัตว์อื่นทางกายภาพ แม้อาจจะแค่เพียงเล็กน้อย[4]
ปลาทอง (Carassius auratus auratus)[5] และปลาม้าลาย (Danio rerio)[6] เป็นตัวอย่างของ tetrachromat ที่มีเซลล์รูปกรวยไวต่อสีแดง สีเขียว สีน้ำเงิน และแสงอัลตราไวโอเลต
นกบางสปีชีส์เช่น Taeniopygia guttata (อังกฤษ: Zebra Finch เป็นนกวงศ์นกกระติ๊ด) และนกวงศ์นกพิราบและนกเขา สามารถใช้แสงอัลตราไวโอเลตที่มีความยาวคลื่น 300–400 nm ในการเห็นเพื่อประโยชน์ในการเลือกคู่และการหาอาหาร[7] เช่น นกที่มีขนและผิวหนังที่มีสีอัลตราไวโอเลตมักจะได้รับเลือกเป็นคู่[8] ตาปกติของนกจะตอบสนองต่อความยาวคลื่นที่ 300–700 nm ซึ่งตรงกับความถี่ประมาณ 430–1,000 เทระเฮิรตซ์
แมลงที่กำลังหาอาหารมีความสามารถในการเห็นแสงสะท้อนจากดอกไม้มีความยาวคลื่นประมาณ 300–700 nm[9][10] เนื่องจากการถ่ายโอนเรณู (Pollination) ในระหว่างแมลงและพืชดอกไม้เป็นความสัมพันธ์แบบพึ่งพากัน จึงมีการวิวัฒนาการร่วมกันระหว่างแมลงที่หาอาหารและพืชโดยการเพิ่มช่วงความยาวคลื่นในการเห็นของแมลง และในการสะท้อนแสง (คือสี) ของดอกไม้[4] Directional selection[11] (แปลว่า การคัดเลือกมีทิศทางเดียว) ทำให้พืชมีการแสดงสีต่าง ๆ เพิ่มขึ้นเรื่อย ๆ จนกระทั่งเข้าไปในระดับสีอัลตราไวโอเลต ซึ่งดึงดูดสัตว์ที่เป็นพาหะถ่ายเรณูในระดับสูงยิ่ง ๆ ขึ้นไป[4]
พาหะถ่ายเรณูบางประเภทอาจจะใช้การเห็นสีแบบ tetrachromatic เพื่อเพิ่มและรักษาความสำเร็จในการหาอาหารในระดับที่สูงกว่าคู่แข็งที่มีการเห็นแบบ trichromatic (คือแบบมีเซลล์รูปกรวยแค่ 3 ประเภท) ผึ้งเป็นพาหะถ่ายเรณูที่มองเห็นแสงอัลตราไวโอเลต แต่มีการเห็นสีแบบ trichromatic เพราะมีเซลล์รูปกรวยเพียงสามเซลล์ ซึ่งแต่ละเซลล์ไวต่อสีอัลตราไวโอเลต สีเขียว และสีน้ำเงิน[12]
มนุษย์และไพรเมตใน parvorder "Catarrhini" ปกติมีเซลล์รูปกรวย 3 ประเภท จึงเป็นสัตว์ประเภท trichromat ถึงอย่างนั้น ในระดับความแข้มแสงที่ต่ำ เซลล์รูปแท่งอาจมีส่วนในการเห็นสี ดังนั้น สัตว์อาจจะเพิ่มระดับการเห็นสีเป็นแบบ tetrachromatic[13]
ในมนุษย์ มียีนสีของเซลล์รูปกรวยสองประเภทซึ่งอยู่ที่โครโมโซมเอกซ์ ซึ่งก็คือยีน opsin แบบคลาสสิกกรุ๊ป 2 ที่เรียกว่า OPN1MW และ OPN1MW2 มีการเสนอว่า เนื่องจากผู้หญิงมีโครโมโซมเอกซ์ 2 โครโมโซมในเซลล์ บางคนอาจจะมียีนสีของเซลล์รูปกรวยที่ต่างจากคนอื่น และอาจจะเกิดมากเป็น tetrachromat มีเซลล์รูปกรวย 4 ประเภทที่ทำงานได้พร้อม ๆ กัน โดยที่แต่ละประเภทตอบสนองต่อความยาวคลื่นที่ต่าง ๆ กันในช่วงสเปกตรัมที่เห็นได้[14]
งานวิจัยหนึ่งเสนอว่า 2–3% ของผู้หญิงในโลกอาจจะมีเซลล์รูปกรวยประเภทที่ 4 ที่อยู่ในระหว่างสีแดงและสีเขียวปกติ ซึ่งโดยทฤษฎีแล้ว เพิ่มความสามารถการแยะแยะสีได้อย่างเป็นนัยสำคัญ[15] ส่วนอีกงานวิจัยหนึ่งเสนอว่า ผู้หญิงมีจำนวนถึง 50% และผู้ชายถึง 8% อาจจะมีเซลล์รูปกรวยประเภทที่ 4 และมีความสามารถในการแยกแยะสีในระดับที่เพิ่มขึ้นตามจำนวนเซลล์รูปกรวยนั้น เมื่อเทียบกับมนุษย์ที่เป็น trichromat
ในเดือนมิถุนายน ปี ค.ศ. 2012 หลังจากที่ได้ทำงานวิจัยมาถึง 20 ปีกับผู้หญิงที่มีเซลล์รูปกรวย 4 ประเภท (ที่ไม่มีความสามารถเพิ่มขึ้นจริง ๆ) นักประสาทวิทยาศาสตร์ ดร. เกเบรียล์ จอร์แดน ระบุผู้หญิคนหนึ่ง (มีรหัสว่า cDa29) ที่สามารถตรวจจับสีในระดับที่เพิ่มขึ้นมากกว่ามนุษย์ที่เป็น trichromat ซึ่งแสดงถึงความเป็น tetrachromat ที่มีเซลล์รูปกรวยประเภทที่ทำงานได้จริง ๆ[16][17]
มีความแตกต่างมากมายหลายแบบในยีนสีของเซลล์รูปกรวยในหมู่มนุษย์ แต่ภาวะ tetrachromacy ที่แพร่หลายและชัดที่สุดจะเป็นพวกที่มาจากผู้หญิงที่เป็นพาหะของยีนสีแดงสีเขียวที่ไม่เหมือนปกติ ซึ่งมักจะถูกรวมกลุ่มอยู่ในพวก "ตาบอดสี" ประเภทตาบอดจางสีแดง (protanomaly) หรือตาบอดจางสีเขียว (deuteranomaly) เหตุทางชีวภาพของปรากฏการณ์นี้ก็คือการทำงานในกระบวนการ X-inactivation[18] ของอัลลีลคู่ที่ไม่เหมือนกัน (heterozygotic) ของยีนสีในเรตินา คือเพราะมีการระงับการทำงานของอัลลีลโดยสุ่ม ดังนั้น อัลลีลทั้งคู่ (ที่ไม่เหมือนกัน) อาจจะมีการแสดงออก ทำให้ผู้นั้นมีโคนสี 4 ชนิด[19][20] นี้เป็นกลไกเดียวกันที่ยังลิงโลกใหม่ (new-world monkey) ให้มีการเห็นแบบ trichromatic
ในมนุษย์ การแปลผลของข้อมูลสายตาในขั้นเบื้องต้นเกิดที่นิวรอนในเรตินา ยังไม่ชัดเจนว่า เส้นประสาทเหล่านี้จะมีปฏิกิริยากับข้อมูลสีใหม่อย่างไร คือไม่รู้ว่า ระบบประสาทสามารถส่งข้อมูลสีใหม่นั้นโดยเป็นสีต่างหาก หรือว่า ต้องรวมข้อมูลสีใหม่ลงในส่วนข้อมูลสีที่มีอยู่แล้ว ข้อมูลทางตาออกจากตาโดยเส้นประสาทตา (optic nerve) ซึ่งจะมีความจุสำรองเพื่อจะส่งข้อมูลเกี่ยวกับสีใหม่หรือไม่ก็ยังไม่รู้ นอกจากนั้นแล้ว การแปลผลข้อมูลสายตาในระดับสูง ๆ ขึ้นไปก็เกิดขึ้นในสมอง แต่ก็ยังไม่รู้ว่า เขตต่าง ๆ เหล่านั้นจะปฏิบัติการอย่างไรถ้ามีทางประสาทที่ส่งข้อมูลสีใหม่ ๆ เกิดขึ้น
หนูหริ่งปกติมีสีของเซลล์รูปกรวยเพียงสองสี แต่สามารถสร้างหนูให้มีสีแบบที่สาม หนูที่ทำใหม่นี้ ปรากฏว่าสามารถแยกแยะสีได้มากขึ้น[21] ซึ่งเป็นหลักฐานค้านประเด็นคัดค้านที่กล่าวมาแล้ว แต่ว่า รายงานผลเกี่ยวกับสภาพพลาสติกของเส้นประสาทตาที่กล่าวไว้ในงานวิจัยนั้นได้ถูกทักท้วงแล้ว[22]
มนุษย์ไม่สามารถเห็นแสงอัลตราไวโอเลตได้โดยตรงเพราะว่าเลนส์ตากั้นแสงที่มีความยาวคลื่นระหว่าง 300-400 nm ส่วนกระจกตา (cornea) กั้นแสงอัลตราไวโอเลตมีคลื่นความยาวที่สั้นกว่านั้น[23] อย่างไรก็ดี เซลล์รับแสง (photoreceptor) ของเรตินาปรากฏว่าไวแสงจนเกือบถึงระดับแสงอัลตราไวโอเลต และบุคคลที่ไม่มีเลนส์ตา (เป็นอาการที่เรียกว่า สภาพไร้แก้วตา ICD-10 H27.0, Q12.3) สามารถเห็นแสงใกล้แสงอัลตราไวโอเลตเป็นสีน้ำเงินปนขาวหรือสีม่วงปนขาว ซึ่งอาจเป็นเพราะเซลล์รูปกรวยทั้งสามประเภทมีความไวใกล้ ๆ กันต่อแสงอัลตราไวโอเลต โดยเซลล์รูปกรวยแบบสีน้ำเงินมีความไวมากที่สุด[24]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.