Remove ads
From Wikipedia, the free encyclopedia
Пулсирајући млазни мотор (енгл. ) је карактеристичан по процесу, у коме се узимање ваздуха, горива, сагоријевање и стварање млаза (са потиском) одвија у импулсима. Састоји се од уводника (усисника) ваздуха, система неповратних вентила (или без њих), коморе сагоријевања, бризгаљки горива и млазнице.
Погон летелица | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Врсте | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Мотору са вентилима није потребна почетна брзина да би почео са радом, за разлику од набојно млазног, а за неке без вентила потребно је убацити почетни, свежи ваздух. Пулсирајући млазни мотор има веома мали статички потисак. Исти расте са повећањем брзине, односно са динамичким притиском, испред неповратних вентила, односно испред коморе сагоревања. Из тога разлога, се ови мотори користе у комбинацији са додатним почетним погоном (као што је био случај са -1 са стартном ракетом). Поред тога, пулсирано сагоревање ствара буку и представља извор јаких вибрација. Из тога разлога су непрактични за употребу, без обзира на убедљиву предност у једноставности конструкције, производњи, одржавању и у малој цени. Позната и једина је била серијска апликација овог типа мотора на немачкој крилатој ракети бомби V-1 (летећа бомба), у току Другог светског рата. Произведено је преко 31 100 примерака.
Пулсирајући млазни мотори су развијени у варијантама са и без неповратних вентила. Неповратни вентили су најосетљивији део система и они лимитирају оперативни век, у трајању до једног часа, због чега су и основна препрека за ширу примену решења са њима.
Коначно је задржан, у већој употреби, једино у спортском авио-моделарству.[1][2][3]
Пулсирајући млазни мотор је пројектовао шведски проналазач Мартин Виберг (енгл. ). Прву конструкцију је патентирао 1906. године, руски инжењер В. В. Кароводин, чији је радни примерак завршен 1907. године. Фрацуски проналазач Жорж Марконет (енгл. ), патентирао је своју конструкцију пулсирајућег мотора 1908. године, за који многи сматрају да је имао највећи утицај на једину практичну примену и ако се дуго на њу чекало. Немачки конструктори, уочи Другог светског рата, предузели су опсежне активности за изналажење алтернативе за клипне моторе, за погон авиона, те им нису измакли пажњи ни ови патенти. Тако је настала прва оперативна апликација пулсирајућег млазног мотора на крилатој (летећој) бомби -1. Немачки независни истраживач инжењер Паул Шмит ( ), из Минхена, направио је одређене измене и допуне на дотадашње патенте. Уз подршку немачког ратног ваздухопловства 1933. године, пројектовао је оперативни пулсирајући млазни мотор. На основу тога пројекта направљен је мотор -014, који је интегрисан на „летећу бомбу“, под познатим називом -1. Главни конструктор Роберт Лисер ( ) је изабрао овај мотор, због једноставности, ниске цене и јефтине масовне производње. То је било исплативо за дотичну једнократну употребу. Иначе је мотор, поред осталог, имао главну ману кратак век, због „флатера“ (резонанце) неповратних вентила. Неповратни вентили су издржавали свега 15 до 60 минута рада. За време мање од једне године (од 1945. до 1946) произведено је више од 10.000 примерака ових летећих бомби.
После рата, настављена су истраживања и развој пулсирајућих млазних мотора у француској фирми Снекма и у америчким Прат енд Витни и Џенерал електрик. Добијени резултати су били интересантни за САД и СССР, где се и развило више експерименталних апликација.
„Крилате бомбе“ нису имале ефикасан навигациони систем, због тадашњег нивоа развооја тога сегмента технологије и и због неисплативости коришћења сложеног и скупог система у једнократној употреби. Из тих разлога су те летелице биле непрецизне. Поље растурања погодака, било је приближно у квадрату са страницама од 3 , са дометом од 150 . Такође је била ограничена ефикасност мотора. Исти је захтевао убрзање до 100 , а горње ограничење му је било 250 . Из тих разлога се у послератном периоду, у нуклеарној ери, није могло рачунати на ту врсту погона за носаче нуклеарних глава. Тада су већ увелико били у развоју перспективнији и ефикаснији турбомлазни мотори.
Због ниске цене и једноставности, мали пулсирајући млазни мотори су веома популарни у спортском авио-моделарству. За ту сврху, серијски се производе и на слободном су тржишту, са понудом и критичних резервним делова, као што су неповратни вентили.[2][4]
Пулсирајући млазни мотор ради у режиму пулсирања. Његов циклус није континуалан, као код турбомлазног и набојно млазног мотора. Пулсирање је са учестаношћу око 10 херца, за велике, а за мале моделарске моторе, је и до 250.
Конструкција пулсирајућег млазног мотора се састоји од цилиндричне коморе за сагоревање, са продужетком у млазницу и са сужењем. На чеоном делу цилиндричног тела је усисник, за пријем ваздуха у комору сагоревања. Између коморе за сагоревања и усисника је попречна преграда, која је и носач система неповратних вентила. Који на принципу разлике притиска пропуштају ваздух у комору, а спречавају истицање гаса из ње, према усиснику, те је исти приморан да истиче само кроз млазницу.
Неповратни вентили могу бити различите конструкције. На мотору -014 на -1, имали су облик и понашање ролетни.[5] Танке плоче, са просецима у облику слова П, израђене су од каљеног челика. Једна страница остаје везана са целином (није сечена), а по тој линији се елеменат савија због еластичности, а слободна страна се подиже (отвара). То отварање диктирају две фрезоване профилисане плоче, између којих је укљештена та танка еластична плоча са елементима („клапнама“). На те еластичне „клапне“ је усмерен ваздух из усисника, кроз профилисане канале плоча носача и услед разлике притиска оне се отварају, само на слободну страну (види слику доле). Код малих мотора су у облику цвета.[6] Први тип конструкције је далеко бољи, али је тежи и скупљи за производњу.
На предњем делу коморе за сагоревање, налазе се бризгаљке горива. Док је притисак у резервоару већи, у односу на комору, гориво се убризгава, а када је обрнуто, неповратни вентили на њима то прекидају и тако наизменично наставља.
Иницијално паљење мешавине горива и ваздуха, у комори сагоревања, је са свећицом, која ради на принципу електро пражњења са искрењем високе учестаности. Смеша се пали при испуњењу услова у измешаном ваздуху и гориву. Када се кошуљица коморе за сагоревање довољно загреје (обично неколико секунди након почетка код великих мотора, или делић секунде за мале), електро варница није потребна, смеша се пали од њених топлих зидова и од заосталих варница из претходног циклуса.
Пулсирајући млазни мотор има јак карактеристичан звук и зујање, праћено са вибрацијама.
Принцип рада класичног пулсирајућег млазног мотора је у фазама процеса:
|
Његов радни циклус је илустрован на цртежу, десно:
Пулсирајући млазни мотор поседује фундаменталне разлике, у односу набојно млазни мотор или турбомлазни.
Заблуда је сматрати да пулсирајући млазни мотор не може да ради у стационарним условима. Међутим, у тим условима, неким његовим варијантама се мора на почетку рада довести свеж ваздух. За разлику од набојно млазног, пулсирајући мотори могу да одрже рад, када стоје у месту, без кретања платформе на којој су причвршћени. У тим условима потисак је мали, али мотор ради. Пример, мотор -014, на -1, прво се пуштао да ради па се тек онда вршило катапултирање целе летеће бомбе (погледај „Видео”. Архивирано из оригинала 21. 06. 2015. г.).
Рад мотора, у овим условима, објашњава се на следећи начин. Када се притисак у комори сагоревања, после сваког пулса, сведе на атмосферски, проток гаса у комори се продужи по инерције, а то доводи до смањења притиска у томе простору испод величине спољњег. Тада се вентили отварају под утицајем разлике притиска између атмосфере и у комори (то исто има време трајања). За време трајања док се вентили не затворе због обрнуте разлике притиска, мотор апсорбује потребну количину ваздуха, у комори за „одрађивање“ следећег циклуса. На ракети се мотор одликује са специфичним импулсом, а то је показатељ степена ефикасности или квалитета мотора. Ова бројка је такође мера потрошње горива. Доња илустрација, упоредно приказује вредности овог индекса Iy [а], за различите врсте млазних мотора, у зависности од брзине лета, изражене у еквиваленту Маховог броја. Дијаграм илуструје распон примене сваке од врста мотора.
За разлику од ракетног мотора, код којих потисак не зависи од брзине ракете, потисак пулсирајућег млазног мотора веома много зависи од параметара, висине и брзине лета. Није било могућности за приказ универзалних перформанси, као на нивоу мора (висина нула), тако да су приказани мотори израчунати на основу одређеног опсега анвелопе по висини и брзини лета.[7][8]
Пулсирајући млазни мотор се развио у неколико варијанти, све у циљу да се превазиђе главни експлатациони недостатак, осетљивост неповратних вентила и да се мотору продужи радни век (ресурс). Развијене су и варијанте пулсирајућег млазног мотора без вентила у облику U и експлозивни.
Ово је измењена класична верзија пулсирајућег млазног мотора, у којој нема никаквих покретних делова (вентила), са чиме је век његовог трајања значајно продужен. Са вентилима мотор траје до једног часа времена, што може бити довољно за извржење задатка у оквиру његове једнократне употребе. За понављање задатка, мотор са вентилима, апсолутно је не применљив.
Конструкција овога U мотора, састоји се од уводника (усисника) ваздуха (кратка цијев), коморе сагоријевања са бризгаљкама горива и млазнице (дужа цијев). Није му потребна почетна брзина да би почео с радом, за разлику од набојно млазног мотора, али је потребан почетни ваздух под одређеним динамичким притиском. Усисник и млазница су међусобно паралелни у облику U, да се не губи део потиска услед повратног струјања кроз усисник, пошто је то у истом смеру као и кроз млазницу.
Основна разлика између пулсирајућих млазних мотора са и без вентила у облику U:
Рад мотора са посебним улазом ваздуха, без вентила, у облику U:
Суштина принципа рада пулсирајућег млазног мотора без вентила у облику U је у томе што је маса струјне цеви излазног гаса кроз краћу излазну цев мања и услед инерције се брже кроз њу заврши истицање, него кроз дугачку млазницу већег пречника. Због те чињенице, временски дужег истицања гаса кроз млазницу, због веће инерције, створи се иза млаза гаса, у чеоном делу коморе, разлика притиска због које почне усисавање кроз краћу цев. Са пажљивим пројектним подешавањем неравнотеже ове две струјне масе гаса (у млазници и у усисној цеви) оствари се правилно временско одвијање фаза циклуса рада мотора. У комори заостаје део врелих гасова од којих се пали нова приспела смеша и тако се циклус понавља. Облик већег дела од овог мотора није различит од претходног са вентилима, посебно је слична комора за сагоревање. Она чини мањи део целине са укупном дугачком цеви, која се завршава са млазницом.
Овај тип мотора није у некој оперативној употреби, још увек је у истраживачко развојној фази.[8] [9][10]
Овај тип пулсирајућег млазног мотора је најновији и практично је произашао из претходног. Настао са сазнањем да скраћивање цеви доприноси повећању потиска. Дошло се до једноставне конструкције где је усисна и уздувна цев заједничка и то веома кратка. У ствари то је обична „бленда“. Ово решење је могуће услед осцилаторног понашање импулса мотора. Једна „бленде“ може да се понаша као издувна цев, у фази циклуса рада, а као усисна у току фазе усисавања. Ова конструкција мотора је смањене ефикасности, у овом примитивном облику. Због одсуства резонантне цеви, сабијање и усисавање је праћено са јаким акустичним таласима. Међутим, уређај ради прилично добро и ако је једноставан, као тегла за џем са поклопцем, на коме је направљен отвор. Тегла је делимично напуњена са лако запаљивим горивом, које испарава. Од те сличности и потиче име уређају, „тегла за џем“. Успешна верзија уређаја „тегле за џем“, покренута је на Новом Зеланду, Мичел Лотон (енгл. ), у пластичној флаши. Бочица, са алкохолом, била је мање ефикасна верзија од „тегле за џем“ и није било могућности са њом одржавати потисак, дуже од неколико секунди. Претпоставило се да коришћени алкохол, у пластичној флаши, није погодан, зато што није могао да се контролише, деловало је као немогуће зауставити развој топлоте и заштитити зидове пластичне флаше од прегревања.
(б) Смеша ваздуха и горива се пали са спољном искром, |
или са ужареном честицом, заосталом из претходног |
циклуса. (а) У претходном циклусу при издувавању, по |
инерцији и услед хлађења коморе, истекло је више гаса |
него што је потребно за изједначење притиска. Тако, |
чим је истицање гаса стало, почео се усисавати свежи |
ваздух у комору („теглу“) и почиње нови радни циклус. |
За функционисање концепције „тегле за џем“, користило се авионско гориво, које лако испарава, запали се његов гасовити део помешан са ваздухом, који се издвоји изнад површине течног дела.
Принцип рада овог уређаја се своди на:
Овај принцип је за сада сведен само за једнократну употребу, у авио-моделарству, погон летећих мета, за гађање у ваздуху и слично.[8][9]
До сада је много истраживано и експериментисано са пулсирајућим моторима без вентила, са изграђеним примерцима у разним величинама и главне дилеме нису отклоњене. Са једне стране нема једноставнијег погона, а са друге стране тешко је отклонити главне недостатке, првенствено еколошке природе, велику буку и загађење околине. Морају се споља иницијално пуштати у рад, са почетном варницом, а U и са почетним струјањем ваздуха. Велика им је предност што немају потребу за било какво одржавање. Немају ниједан покретан део који би се могао истрошити или оштетити. Без обзира на све, идеја се не напушта. Постоји још много простора за напредак у развоју и експериментисању, поготово што се лако не напуштају једноставне и јефтине конструкције. По тим елементима је неупоредив са осталим ваздухопловним моторима, који су компликовани, скупи и траже велике трошкове за и рад за одржавање.
За сада ова категорија мотора налази примену у спортском ваздухопловству, ултралакој авијацији, код беспилотних летелица, код летећих мета и за ношење разних сонди за атмосферска мерења.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.