свемирска сонда направљена да врши извиђање и истраживање Марса из орбите From Wikipedia, the free encyclopedia
Орбитални истраживач Марса (енгл. ), или скраћено МРО (енгл. ), свемирска је сонда свемирске агенције НАСА направљена да врши извиђање и истраживање Марса из орбите. Када је ушла у Марсову орбиту постала је шеста оперативна сонда у орбити планете, чиме је оборен рекорд у броју сонди које се налазе у орбити око Марса. Ову свемирску сонду вредну 720 милиона долара направила је компанија Локид Мартин уз надзор лабораторије за свемирску пропулзију (дела калифорнијског института за технологију). Лансирање је извршено 12. августа 2005. године, а 10. марта 2006. сонда је ушла у орбиту Марса. У новембру 2006. након пет месеци успоравања помоћу горње атмосфере Марса, MRO је ушао у коначну ниску орбиту и отпочео научна истраживања.
Орбитални истраживач Марса (Mars Reconnaissance Orbiter) | |
---|---|
Оператор | НАСА/ЈПЛ |
Произвођач | Локид Мартин/ЈПЛ |
Тип мисије | Орбитер |
Датум лансирања | 12. август 2005. у 11.43 УТЦ |
Крај мисије | У току (>10 година[1]) |
Ракета-носач | Атлас V 401 |
Место лансирања | Свемирски центар Кенеди |
Маса | 2.180 |
Извор напајања | соларни панели |
Снага напајања | 1.000 |
Врста орбите | поларна |
Улазак у орбиту | 10. март 2006. у 21.24 УТЦ |
Инклинација орбите | 93 ° |
Орбитални период | 122 минута |
Апоапсис | 320 |
Периапсис | 255 |
Међународна ознака | 2005-029A |
Вебсајт | |
MRO има велики број научних инструмената као што су камере, спектрометар и радар, који се користе за изучавање топографије, минерала у тлу и леда на Марсу. Ова мисија олакшава долазак других тако што дневно прати временске услове, проучава могућа места за слетање и омогућава брз трансфер велике количине података са површине ка Земљи. Комуникациони систем MRO ће пренети више података од свих свемирских сонди лансираних ка другим планетама до данас.[2]
Сонда је у марту 2016. године прославила 10 година у орбити око црвене планете. За то време направила је преко 45.000 орбита, превалила више од 1,53 милијарде километара, ка Земљи послала преко 264 TB података (>216.000 фотографија).[3]
MRO је једна од две мисије разматране за лансирање ка Марсу 2003. године, међутим, током селекције орбитер је уступио место мисији тада познатој као MER (Марс експлорејшн роверс - Ровери за истраживање Марса).[4] Мисија орбитера је заказана за наредни могући лансирни прозор ка Марсу 2005. године и дат јој је коначан назив.
MRO је конструисан на основу веома успешне мисије Марс глобал сурвејор (енгл. ) да обави надгледање Марса из орбите. У раној фази конструкције било је познато само да ће летелица имати камеру велике резолуције.
У октобру 2001. године НАСА је изабрала Локид Мартин за израду летелице, а до краја те године изабрани су и сви инструменти који ће бити уграђени. Током фазе израде није било кашњења нити застоја било какве природе.
По плану мисије, научне операције требало је да трају две Земаљске године, од новембра 2006. до новембра 2008. Један од главних циљева је да се мапира пејзаж Марса помоћу камере високе резолуције како би могла да се изаберу места за слетање будућих мисија. MRO је играо кључну улогу у одабиру места за слетање мисије Феникс која је истражила поларни регион Марса.[5] Првобитно место слетања је фотографисано камером високе резолуције и помоћу тих фотографија је откривено да је то место пуно великих стена. Ровер Марсова научна лабораторија, која је лансирана у новембру 2011, слетеће у Гејл кратер, који је такође прво испитао MRO.
MRO користи своје инструменте и за изучавање климе Марса, временских услова, атмосфере и геологије, као и за потрагу за течном водом у поларним капама и испод површине. Такође, један од задатака мисије јесте и да проба да нађе остатке неуспелих мисија из прошлости укључујући Марсов поларни лендер и Бигл 2 који су се срушили негде близу поларних капа.[6] Након завршетка примарних научних истраживања, задатак продужене мисије биће да служи као подршка другим мисијама током уласка у атмосферу, за навигацију и за пренос података са површине ка Земљи.
MRO је успешно лансиран 12. августа 2005. ракетом Атлас V-401 са свемирског центра Кенеди на Флориди. Последњи, Кентаур степен ракете завршио је своје сагоревање након 56 минута и убацио MRO на међупланетарну трансферну орбиту према Марсу.[7]
MRO је крстарио међупланетарним простором седам и по месеци пре него што је стигао до Марса. Током тог пута већина научних експеримената и инструмената је тестирана и калибрисана. Да би се обезбедио правилан улазак у орбиту по доласку до Марса, планирана су четири маневра за корекцију путање, а размишљало се и о петом. Међутим, само три маневра за корекцију су била потребна тако да се уштедело гориво које се може касније искористити за продужење мисије.[8]
MRO је започео улазак у орбиту приласком Марсу 10. марта 2006. и прелетом изнад његове јужне полулопте на висини од 370–400 . Свих шест главних мотора упаљени су током 27 минута да би успорили летелицу са ~2.900 на ~1.900 . Резервоар хелијума је био хладнији од очекиваног, што је смањило притисак у резервоару за око 21 . Ово смањење притиска је утицало да потисак мотора опадне за 2%, али је MRO аутоматски компензовао и продужио рад мотора за 33 секунде.[9] Након овог процеса MRO је ушао у издужену елиптичну поларну орбиту са периодом ротације од око 35,5 часова. MRO је 30. марта 2006. године започео процес аерокочења, поступак из три етапе који дупло смањује количину горива потребну да се постигне нижа, кружна орбита са краћим периодом ротације. У септембру су се мотори још једном упалили да се дотера орбита у скоро кружну, 250 са 316 изнад површине планете.[10]
Камера (енгл. ) је телескоп рефлектујућег типа пречника 0,5 , највећи икада послат на мисију у дубоки свемир и има резолуцију од 1 микрорадијана или 0,3 са висине од 300 . У поређењу, сателитски снимци Земље су доступни у резолуцији 0,5 , а сателитски снимци у Гугл Земљи су доступни у резолуцији од 1 .[11] снима фотографије у три таласне дужине, 400 до 600 (плава - зелена или П-З), 550 до 850 (црвена) и 800 до 1.000 (инфрацрвена - ИЦ).[12]
Црвене слике у боји су 20.264 пиксела (6 широке), док су П-З и ИЦ 4.048 пиксела (1,2 широке). -ов компјутер чита ове линије у складу са брзином у односу на површину планете тако да су слике у теорији неограничене у дужину. Практично међутим, слике су ограничене меморијским капацитетом компјутера од 28 гигабајта и номинална максимална величина је 20.000 × 40.000 пиксела (800 мегапиксела) и 4.000 × 40.000 пиксела (160 мегапиксела) за П-З и ИЦ слике. Свака слика величине 16,4 гигабајта се компресује на 5 гигабајта пре слања ка Земљи. Да би се олакшало мапирање потенцијалних места за слетање будућих мисија може да произведе стерео парове слика из којих се може израчунати висина појединих области до ±0,25 m.[13] инструмент је конструисала корпорација Бол ероспејс енд текнолоџиз.
(енгл. ) пружа црно-беле фотографије (500 до 1.000 ) са резолуцијом пиксела до око 6 . је дизајнирана да обезбеди додатне мапе за детаљнија надгледања -а и -а, а такође се користи за израду мозаика великих области површине Марса, надгледање одређених области током времена и праћење промена тих области, као и за стерео надгледање () кључних региона и потенцијалних места за слетање.[14] Оптички део инструмента се састоји од Максутов Касегрејн телескопа жижне даљине 350 са ЦЦД сензором резолуције 5.064 пиксела. Инструмент снима фотографије тла ширине 30 и има довољно унутрашње меморије да складишти фотографију дужине 160 пре него што је учита у главни рачунар. Камеру је направио и њом управља Малин спејс сајенс системс. је мапирао 50% површине Марса до фебруара 2010. године.[15]
(енгл. ) је широкоугаона камера ниске резолуције која посматра Марс у пет видљивих и две ултраљубичасте таласне дужине.[16] Сваког дана, услика 84 фотографије и произведе глобалну мапу са резолуцијом пиксела од 1 до 10 . Ова мапа обезбеђује дневни временски извештај за Марс, помаже у карактеризацији сезонских и годишњих промена и мапира присуство водене паре и озона у атмосфери.[17] Камеру је направио и њом управља Малин спејс сајенс системс.
(енгл. ) инструмент је спектрометар видљиве и инфрацрвене (ВИЦ) светлости који се користи да направи детаљне мапе површинске минералогије Марса. Ради на опсегу од 370 до 3.920 таласне дужине, мери спектар у 544 канала (сваки 6,55 широк), и има резолуцију од 18 са висине од 300 . се користи за идентификацију минерала и хемикалија које указују на тренутно или прошло постојање воде на површини Марса. У ове минерале спадају гвожђе, оксиди, силикати и карбонати, који имају карактеристичне шаблоне своје видљиве – инфрацрвене енергије.[18]
(енгл. ) је спектрометар са једним видљивим – инфрацрвеним каналом (0,3 до 3,0 ) и осам инфрацрвених (12 до 50 ) канала. Ови канали су изабрани због мерења температуре, притиска, водене паре и нивоа прашине. посматра атмосферу на хоризонту Марса (виђену са позиције летелице) разлажући је у вертикалне делове и извршава мерења унутар сваког дела у сегментима од по 5 . Ова мерења се склапају у дневни временски извештај да би се показале основне променљиве у атмосфери: температура, притисак, влажност и концентрација прашине.[19]
(енгл. ) је радар чије зрачење продире плитко испод површине Марса. Конструисан је тако да изучи унутрашњу структуру Марсових поларних капа. Такође прикупља податке са целокупне површине планете о подземним слојевима леда, стена и потенцијално течне воде која би могла да буде доступна са површине. користи високофреквентне радио-таласе између 15 и 25 , опсег који омогућава да се разазнају слојеви од свега 7 до максималне дубине од 1 . Постиже хоризонталну резолуцију од 0,3 до 3 .[20] је конструисан да ради у сарадњи са МАРСИС радаром, уграђеним на сонду Марс експрес Европске свемирске агенције, који има мању резолуцију, али продире до много веће дубине у тло. Оба радара је конструисала Италијанска свемирска агенција.
Поред оптичких инструмената, MRO поседује још доста техничких инструмената. Пакет за истраживање гравитационог поља (енгл. ) детектује варијације у магнетном пољу Марса мерећи промене у брзини кретања летелице. Те промене брзине се откривају при мерењу Доплеровог ефекта код радио-сигнала примљених на Земљи. Овај пакет такође садржи осетљиве акцелерометре који се користе за утврђивање густине атмосфере планете при процесу аерокочења.[21]
Електра је радио ултрависоке фреквенције дефинисан софтвером који се користи за комуникацију са другим летелицама при прилазу, слетању и операцијама на површини. Уз протоколом контролисану везу између летелица од 1 до 2 , Електра такође пружа прикупљање Доплерових података, снимање методом отворене петље и услуге тачног времена веома велике прецизности. Доплерове информације код летелица које су на путу ка Марсу могу бити коришћене за прецизније усмеравање при уласку у атмосферу или за подешавање трајекторије при слетању на површину. Доплерове информације о летелицама које су слетеле ће такође помоћи научницима да прецизно одреде положај лендера и ровера на површини Марса. МЕР ровери користе претходну генерацију УХФ радио трансмисије која им пружа сличне могућности кроз Марс Одисеј орбитер.
Електра радио је коришћен за трансмисију података са ровера Спирит и Опортјунити али је тек почео да ради пуним капацитетом по доласку мисије Феникс. Пошто је Електра радио дефинисан софтвером до нивоа модема, нова модулација, кодовање или функције протокола се могу додавати или ажурирати док је летелица у орбити око Марса.[22]
Оптичка камера за навигацију (енгл. ) фотографише месеце Марса, Фобос и Деимос, и њиховим кретањем у односу на звезде у позадини тачно одређује орбиту MRO летелице. Иако сликање месеца није критично за мисију, укључено је као тест технологије за будуће орбитере и слетање лендера.[23]
Радници Локид Мартин спејс системса у Денверу склопили су структуру летелице и прикачили инструменте. Инструменти су конструисани у лабораторији за млазну пропулзију (ЈПЛ), Лунарној и планетарној лабораторији универзитета Аризоне, Лабораторији за примењену физику Џон Хопкинс универзитета, Италијанској свемирској агенцији у Риму, и фирми Малин спејс сајенс системс у Сан Дијегу. Укупни трошкови летелице износили су 720 милиона долара.
Структура летелице је већином направљена од угљеничних композита и алуминијумских плоча у облику саћа. Титанијумски резервоар заузима већину запремине и масе летелице и обезбеђује главнину структурног интегритета. Укупна маса летелице је мање од 2.180 , док је маса летелице без горива 1.031 .[24]
MRO добија сву електричну енергију од два соларна панела, сваки од њих се може окретати независно око две осе (горе-доле или лево-десно). Сваки од панела је димензија 5,35 2,53 и има површину од 9,5 прекривену са 3.744 индивидуалних фотонапонских ћелија. Ове соларне ћелије високе ефикасности су у стању да претворе више од 26% сунчеве енергије у електричну и када су повезане заједно производе 32 волта. На Марсу, два панела производе 1.000 вати, док би у орбити око Земље производили 3.000 вати јер је Земља ближа Сунцу.[25]
MRO има две никл-водоничне пуњиве батерије које се користе за напајање летелице у периоду када није изложена сунчевој светлости. Свака батерија може да складишти 50 ампер-сати. Пун капацитет батерија не може бити искоришћен због напонског нивоа летелице, али омогућава операторима да продуже живот батеријама што је веома важно – узрок већине неуспеха код мисија у свемир је отказ батерија. Инжењери су предвидели да ће само 40% капацитета батерија бити потребно током мисије.[26]
Главни компјутер MRO је процесор РАД750 који ради на 133 , има 10,4 милиона транзистора и 32-бита. Овај процесор је радијационо каљен (отпоран на радијацију) са посебно направљеном матичном плочом. РАД750 је наследник РАД6000 процесора који су користиле многе претходне мисије. Ове карактеристике су можда слабашне у односу на рачунаре које људи данас користе у својим домовима, међутим он је екстремно поуздан, отпоран и може да ради у дубоком свемиру где често дивљају соларне олује.
Подаци се смештају на флеш меморију капацитета 160 гигабајта која се састоји од 700 меморијских чипова, сваки капацитета 256 мегабајта. Овај капацитет и није тако велики с обзиром на количину података која се прикупља; на пример, само једна слика камере може бити величине 28 гигабајта.[27]
Да би се одредила орбита летелице и прорачунали маневри, шеснаест соларних сензора (осам примарних и осам резервних) је смештено на летелици да би се одредио положај Сунца у односу на оријентацију летелице. Две дигиталне камере које се користе за мапирање позиције познатих звезда, обезбеђују Наси потпуне податке у три осе о позицији летелице. Примарна и помоћна Минијатурна унутрашња јединица за инерцијално мерење (енгл. ), коју је обезбедио Ханивел, мери промене оријентације летелице као и било какве промене у брзини које нису узроковане гравитацијом. Свака је комбинација три акцелерометра и три жироскопа. Сви ови системи су критично важни за MRO, јер омогућују да се камере упере са веома великом прецизношћу како би се обезбедиле фотографије високе резолуције које тражи мисија. Сви инструменти су такође посебно конструисани тако да се минимизирају вибрације летелице, које би узроковале да снимци буду замућени и неупотребљиви.[28]
Телекомуникациони подсистем MRO-а је најбољи дигитални комуникациони систем послат у дубоки свемир до данас и по први пут је коришћен капацитет који је приближан турбо коду (највећа теоретска брзина преноса података у неком комуникационом каналу). Састоји се од веома велике антене (пречника 3 ), која се користи за пренос података кроз Мрежу дубоког свемира помоћу таласа фреквенције 8 , и демонстрира коришћење таласних дужина фреквенције 32 за већи пренос података. Максимална пројектована брзина преноса са Марса је 6 , што је десет пута више од претходних орбитера око Марса. До краја 2011. године MRO је ка Земљи послао више од 150 терабајта података. Летелица садржи два појачавача од 100 вати за таласе, један појачавач од 35 вати за К таласе, и два транспондера за дубоки свемир. Подсистем за таласе се користи само у демонстрационе сврхе. Због недостатка слободног спектра на 8,41 таласима, будуће мисије у дубоки свемир ће користити таласе на 32 . Мрежа дубоког свемира свемирске агенције НАСА је уградила пријемнике за ове таласне дужине у сва три своја комплекса (Голдстоун, Канбера и Мадрид) са антенама пречника 34. Током фазе крстарења ка Марсу, летелица је 36 пута слала податке преко нове фреквенције и све је било у реду, тако да је њено коришћење омогућило да служи као резерва уколико се нешто деси са примарним системом.[29]
Летелица користи резервоар за гориво капацитета 1.175 литара који је напуњен са 1.187 погонског горива хидразина. Притисак горива се регулише додавањем хелијума под притиском из спољашњег резервоара. 70% горива је потрошено током уласка у орбиту планете. MRO има 20 уграђених ракетних потисника. Шест већих потисника заједно производи 1.020 потиска за улазак у примарну орбиту око Марса. Ови потисници су првобитно били намењени за Марс Сурвејор лендер 2001. године. Шест средњих потисника производе 132 потиска за промену орбите и одржавање висине. На крају, осам малих потисника производе укупно 7,2 потиска за оријентацију летелице током прикупљања научних података.
Четири реакциона точка се користе за прецизну контролу положаја летелице која је потребна током прикупљања података, као што је сликање фотографија високе резолуције, где се и најмање кретање може одразити на квалитет. Сваки точак се користи за кретање по једној оси. Четврти (причвршћени) точак служи као резерва уколико један од прва три закаже. Сваки точак има масу од 10 и може се окретати брзином и до 6.000 обртаја у минути.[30]
Инжењери Насе процењују да сонда има довољно горива да остане у употреби најмање до 2034. године.[31]
Резултати истраживања радаром северне поларне капе објављени 2009. показују да је запремина леда 821.000 km³, што је 30% леденог покривача на Гренланду.[32]
Чланак у часопису Наука у септембру 2009. објавио је да су неки скорији ударци метеорита створили нове кратере на Марсу и откопали скоро чист лед. Ове нове кратере је открила и датирала камера, а откриће леда је потврдио спектрометар. Лед је пронађен на укупно 5 локација.[33][34]
Резултати скенирања радаром сугеришу да неке одлике терена назване ЛДЕ - Лобејт дебри ејпронс (енгл. ) садрже велике количине леда. Интересантне још од дана Викинг орбитера, ове геолошке одлике подсећају на кецеље материјала које окружују литице. Поред тога, ове одлике показују површински распоред линија попут ледника на Земљи. је обезбедио јаке доказе да су ЛДЕ у Хелас области у ствари ледници прекривени танким слојем крхотина (камења и прашине); јака рефлексија са врха и подножја ЛДЕ сугерише да лед чини већину ове геолошке формације.[35] На основу експеримената Феникс лендера и података прикупљених помоћу Марс одисеј летелице из орбите, зна се да лед постоји одмах испод површине тла на крајњем северу и југу планете.
Помоћу података прикупљеним од стране Марс глобал сурвејор, Марс одисеј и MRO летелица научници су открили распрострањене наслаге минерала хлорида. Докази сугеришу да су ове наслаге настале испаравањем воде богате минералима. Истраживање указује да су језера можда била раштркана по целој површини Марса. Обично су хлориди последњи минерали који се растворе. Карбонати, сулфати и силицијум-диоксид би требало да се растворе пре њих. Сулфати и силицијум-диоксид су пронађени на површини планете од стране МЕР. Места са хлоридним минералима су можда некада у прошлости подржавала разне облике живота, што значи да таква места можда чувају трагове о животу у прошлости.[36]
Група научника која ради на инструменту је 2009. године објавила да се 9 од 10 класа минерала формирало у присуству воде. Различите врсте глина су пронађене на многим локацијама. У ове глине се убрајају каолинит, прехнит и хлорит. Стене које садрже карбонат су пронађене око слива Исидин. Карбонати припадају класи у којој се можда развио живот. Области око Маринерових долина садрже хидратисан силицијум-диоксид и хидратисане сулфате. Други минерали који су нађени на Марсу укључују џеросит, алунит, хематит, опал и гипс. Две од пет минералних класа су формиране са одговарајућим вредностима и довољном количином воде за развој живота.[37]
и камере успеле су да фотографишу одређени број лавина близу северне поларне капе у тренутку док су се дешавале.[38]
НАСА је објавила 4. августа 2011. године да је детектовала нешто што подсећа на текућу слану воду на површини или одмах испод површине Марса.[39] Неколико година касније – 28. септембра 2015. године, користећи додатне податке прикупљене сондом као и осталим летелицама које се налазе у орбити и на површини Марса, НАСА је потврдила да се у летњим месецима на површини појављује течна слана вода.[40][41][42][43]
Агенција НАСА је у фебруару 2015. године објавила да је сонда Орбитални истраживач Марса достигла 40.000 орбита око црвене планете. Сонда је ову прекретницу достигла 7. фебруара 2015. у деветој години истраживања из орбите. До тог тренутка сонда је на Земљу послала 247 TB података, различитих мерења и фотографија високе резолуције, што је више од било које мисије која је послата у дубоки свемир. Сонда се налази у поларној орбити око Марса, на орбиталној висини од око 300 , из које наставља да прикупља податке о површини и атмосфери планете. Сонда служи и као релејна станица која прима податке са ровера и лендера на површини планете и затим их прослеђује ка Земљи. Током својих 40.000 орбита око планете, сонда је превалила скоро дупло већи пут од оног који је прешла у транзиту између Земље и Марса након лансирања 2006. године (око 500.000.000 ).[44] Неколико дана раније, 4. фебруара 2015. године, НАСА је објавила фотографију на којој се види ровер Кјуриосити на површини Марса, близу подножја планине Шарп у Гејл кратеру.[45][46]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.