Remove ads
progression through the phases of the meiotic cell cycle, in which canonically a cell replicates via two nuclear divisions From Wikipedia, the free encyclopedia
Meiosis is a special type of cell division. Unlike mitosis, the way normal body cells divide, meiosis results in cells that only have half the usual number of chromosomes, one from each pair. For that reason, meiosis is often called reduction division. In the long run, meiosis increases genetic variation, in a way which will be explained later.[1]
Sexual reproduction takes place when a sperm fertilizes an egg. The eggs and sperm are special cells called gametes, or sex cells. Gametes are haploid; they have only half the number of chromosomes as a normal body cell (called a somatic cell). Fertilization restores the chromosomes in body cells to the diploid number.
The basic number of chromosomes in the body cells of a species is called the somatic number and is labelled 2n. In humans 2n = 46: we have 46 chromosomes. In the sex cells the chromosome number is n (humans: n = 23).[2] So, in normal diploid organisms, chromosomes are present in two copies, one from each parent (23x2=46). The only exception are the sex chromosomes. In mammals, the female has two X chromosomes, and the male one X and one Y chromosome.
All eukaryotes that reproduce sexually use meiosis. This also includes many single-celled organisms. Meiosis does not occur in archaea or bacteria, which reproduce by simple cell division.
The offspring gets a set of chromosomes from each parent so that, overall, half of its heredity comes from each parent. But the two sets of chromosomes are not identical with the parental chromosomes. This is because they are changed during the reduction division by a process called crossing-over.
This is two-fold:
1. First, to reduce the chromosomes in each egg or sperm to one set only.
2. To allow crossing-over to take place between each pair of parental chromosomes. Crossing-over changes which alleles sit on a particular chromosome.[4]
Although the gametes have only one set of chromosomes, that set is a shuffled mixture of genetic material from both parents. Every single egg or sperm may have a different selection of alleles from the parental chromosomes.
As with shuffling a deck of cards, many different combinations of genes can be produced without a change (mutation) in any individual gene. However, mutations do occur, and they may add alleles which were not in the population before. At any rate, the shuffling increases the variety of the offspring, and the variety gives at least some of the offspring a better chance of surviving in difficult times. The shuffling of alleles which takes place in meiosis may be the reason why sexual reproduction exists at all.[5]
Several quite large taxa (groups of organisms) use cyclical parthenogenesis. This is when several generations are born by virgin birth, and then a generation occurs with normal sexual reproduction. Examples include aphids, and cladocerans (small crustacea called water fleas). Aphids usually operate as follows: when the weather is good, and their plant hosts are at their best, they use parthenogenesis. At the end of the season, when the weather gets worse, they use sexual reproduction. This system of reproduction is called apogamy.
In parthenogenesis, the eggs contain only the mother's genetic material, and they are not fertilized. The egg cells may be produced either by meiosis or mitosis. When meiosis occurs, crossing-over produces a genetic fingerprint which differs somewhat from the mother's. So, the parthenogenetic greenfly offspring are not identical, and do show some genetic variation: some chromosome segments differ because of meiosis. Mitosis would produce identical offspring.[7]
Amongst these parthenogenetic taxa are a number of species which have entirely abandoned sex.
A few eukaryote organisms have completely lost the ability for sexual reproduction, and so do not have meiosis. These include the Bdelloid rotifers, which only reproduce by parthenogenesis.
Meiosis can be divided into meiosis I and meiosis II.
The function of the first division is to permit crossing over. Just like mitosis, meiosis includes prophase, metaphase, anaphase and telophase.
The two cells prepare to divide again in a stage known as interkinesis or interphase II. Both of these cells will go through meiosis II.
In males, all four cells become sperm. In females, only one becomes a mature egg, while the remaining three become re-absorbed into the body.
In humans, there are certain conditions that are caused by meiosis gone wrong. Examples are:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.