Loading AI tools
квазичастица; связанное состояние электрона и дырки Из Википедии, свободной энциклопедии
Эксито́н (лат. excito — «возбуждаю») — квазичастица, представляющая собой электронное возбуждение в диэлектрике, полупроводнике или металле[1], мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Понятие об экситоне и сам термин введены советским физиком Я. И. Френкелем в 1931 году, им же разработана теория экситонов[2][3][4], а экспериментально спектр экситона впервые наблюдался в 1951 году[5] (или в 1952 году[6]) советскими физиками Е. Ф. Гроссом и Н. А. Каррыевым[7]. Представляет собой связанное состояние электрона и дырки. При этом его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить.
Экситон | |
---|---|
Состав | квазичастица |
Классификация | экситон Ванье — Мотта, экситон Френкеля |
Семья | бозон |
Каналы распада |
|
Экситон может быть представлен в виде связанного состояния электрона проводимости и дырки, расположенных или в одном узле кристаллической решётки (экситон Френкеля, a* < a0, a* — радиус экситона, a0 — период решётки), или на расстояниях, значительно больше междуатомных (экситон Ванье — Мотта, a* ≫ a0). В полупроводниках, за счёт высокой диэлектрической проницаемости, существуют только экситоны Ванье — Мотта. Экситоны Френкеля применимы, прежде всего, к молекулярным кристаллам[8].
В объёмных полупроводниках экситонные состояния проявляются только при глубоком охлаждении образцов, что препятствует их использованию. В тонкоплёночных полупроводниковых структурах, напротив, экситонные состояния хорошо выражены при комнатной температуре. Заданным образом изменяя размеры наноструктур, можно изменять энергию связи и другие параметры экситонов и, таким образом, осуществлять управление экситонами в низкоразмерных структурах и создавать приборы на основе физических процессов с участием экситонов[9][10].
Так, разработан прибор, совмещающий функции электрооптического переключателя и детектора излучения на экситонном переходе. Принцип его работы заключается в том, что спектр поглощения экситонов в тонких слоях арсенида галлия при поперечном электрическом поле сдвигается в красную область в силу эффекта Штарка в системе с квантовыми ограничениями. За счёт изменения поглощения внешнее напряжение может модулировать интенсивность проходящего через полупроводник света на частоте экситонного перехода.
Детектирование излучения происходит за счёт распада на электроны и дырки экситонов, образовавшихся при резонансном возбуждении за счёт излучения[11].
Созданы и другие приборы, в которых роль среды, осуществляющей обработку информации, вместо электронного газа играет экситонный газ: оптические модуляторы, фазовращатели, переключатели, оптический транзистор[англ.][12][13] и лазеры[14].
Область науки и техники, которая изучает технические устройства на основе использования свойств экситонов, называют экситоникой.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.