Loading AI tools
выпуклый 17-угольник, у которого все стороны и углы одинаковые Из Википедии, свободной энциклопедии
Пра́вильный семнадцатиуго́льник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Среди других правильных многоугольников с больши́м (больше пяти) простым числом сторон интересен тем, что его можно построить при помощи циркуля и линейки (так, семи-, одиннадцати- и тринадцатиугольники построить циркулем и линейкой нельзя).
Семнадцатиугольник | |
---|---|
| |
Тип | Правильный многоугольник |
Рёбра | 17 |
Символ Шлефли | {17} |
Диаграмма Коксетера — Дынкина | |
Вид симметрии | Диэдрическая группа (D18) порядок 2×18 |
Внутренний угол | ≈158.82° |
Свойства | |
выпуклый, вписанный, равносторонний, равноугольный[англ.], изотоксальный | |
Медиафайлы на Викискладе |
Центральный угол α равен .
Отношение длины стороны к радиусу описанной окружности составляет
Правильный семнадцатиугольник можно построить при помощи циркуля и линейки, что было доказано Гауссом в монографии «Арифметические исследования» (1796 год). Им же найдено значение косинуса центрального угла семнадцатиугольника:
В этой же работе Гаусс доказал, что если нечётные простые делители числа n являются различными простыми Ферма (числа Ферма), то есть простыми числами вида то правильный n-угольник может быть построен с помощью циркуля и линейки (см. Теорема Гаусса — Ванцеля).
Точки пересечения этой касательной с исходной окружностью k₁ — это точки P₃ и P₁₄ искомого семнадцатиугольника. Если принять середину получившейся дуги за P₀ и отложить дугу P₀P₁₄ по окружности три раза, все вершины семнадцатиугольника будут построены.
Следующее построение хоть и приблизительно, но гораздо более удобно.
Точки пересечения последнего перпендикуляра с окружностью являются хорошим приближением для точек P₃ и P₁₄.
При этом построении получается относительная ошибка в 0,83%. Углы и стороны получаются таким образом немного больше, чем нужно. При радиусе 332,4 мм сторона получается длиннее на 1 мм.
У правильного семнадцатиугольника существуют 7 правильных звёздчатых форм.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.