Loading AI tools
Из Википедии, свободной энциклопедии
Визуализация информации — это научная и инженерная дисциплина, направленная на поиск и реализацию форм и способов визуального (в том числе интерактивного) представления абстрактных данных для облегчения их восприятия человеком. Абстрактные данные включают как числовые, так и нечисловые данные, такие как текст и географическая информация. Визуализацию информации следует отличать от научной визуализации — «для визуализации информации пространственное представление выбирается, а при научной визуализации пространственное представление задано»[1].
Область визуализации информации появилась «из исследований в областях человеко-компьютерного взаимодействия, информатики, графики, визуального проектирования, психологии и бизнес-процессов. Эта область во всё возрастающей степени применяется как критическая компонента в научных исследованиях, электронных библиотеках, data mining, анализе финансовых данных, изучении рынка, управлении производством[англ.]* и изыскании лекарственных средств[англ.]»[2].
Визуализация информации предполагает, что «визуальное представление и техники взаимодействия извлекают пользу от широкого канала передачи информации из человеческого глаза в мозг, что позволяет пользователю видеть, исследовать и понимать большой объём информации разом. Визуализация информации фокусируется на создании подходов для доставки абстрактной информации интуитивно понятными путями»[3].
Анализ данных является неотъемлемой частью всех прикладных исследований и задач в производстве. Наиболее фундаментальными подходами к анализу данных являются визуализация (гистограммы, диаграммы рассеяния, изображение поверхностей, деревья, графики параллельных координат и т.д.), статистика (проверка статистических гипотез, регрессия, PCA и т.д.), data mining (ассоциативная обработка и др.) и методы машинного обучения (кластеризация, классификация, дерево решений и т.д.). Среди этих подходов визуализация информации или визуальный анализ данных наибольшим образом опирается на когнитивные навыки человеческого анализа и позволяет обнаружение неструктурированной полезной информации, которая ограничена только человеческим воображением и креативностью. Исследователь не обязан изучать какие-либо изощрённые методы, чтобы иметь возможность интерпретировать визуализацию данных. Визуализация информации служит также схемой выдвижения гипотез, которые, как правило, вытекают из последующего формального аналитического рассмотрения, такого как статистическая проверка гипотез.
Современное изучение визуализации началось с компьютерной графики, которая «с самого начала использовалась для изучения научных проблем. Однако в ранние дни недостаточная мощность графики часто сдерживала использование. Недавний взлёт визуализации начался в 1987 со специального выпуска журнала Scientific Computing, посвящённого компьютерной графике для визуализации. С тех пор состоялись несколько конференций и симпозиумов, спонсированных Компьютерной Ассоциацией IEEE[англ.] и ACM SIGGRAPH[англ.]»[4]. Они были посвящены основным темам визуализации данных, визуализация информации и научной визуализации и более узким темам, таким как объёмная визуализация.
В 1786 году Уильям Плейфэр опубликовал первое графическое представление.
Визуализация информации имеют приложение в таких областях как[2]
Достойные внимания академические и индустриальные лаборатории в этой области:
Конференции в этой области по степени важности в исследовании визуализации данных[6]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.