Loading AI tools
Из Википедии, свободной энциклопедии
Аналлагмати́ческая геоме́трия на плоскости — обширный[1] раздел геометрии, изучающий свойства фигур, сохраняющихся при преобразованиях, переводящих окружности в окружности[2]. Иногда под аналлагматической геометрией понимают только её часть на расширенной плоскости[3][4].
Синонимы:
Расширенная плоскость в данном случае получена добавлением к обычной плоскости «бесконечно удалённой точки». Этот частный случай расширенной плоскости называется круговой плоскостью[9].
Содержание настоящего материала переносится с геометрии окружностей на геометрию сфер почти без принципиально новых идей[10].
Аналлагматическая геометрия на плоскости имеет три следующие основные ветви[8][10]:
Эти три аналлагматические геометрии обладают следующими особенностями[11]:
То́чечная аналлагмати́ческая геоме́трия на расширенной плоскости — одна из трёх основных ветвей аналлагматической геометрии, изучающий свойства фигур, сохраняющихся при точечных круговых преобразованиях, то есть точечных преобразованиях, переводящих окружности в окружности[4][8][7][12].
Синонимы:
Окружностью называется множество всех точек плоскости таких, что они удалены от фиксированной точки плоскости на одно и то же расстояние. Это расстояние называется радиусом окружности, а фиксированная точка — центром окружности[14].
Если радиус окружности равен нулю, то она вырождается в окружность нулевого радиуса — точку. Обычная окружность с положительным радиусом называются собственной окружностью. Точки и собственные окружности называются окружностями конечного радиуса[14].
Если радиус окружности устремить к бесконечности, то она вырождается в окружность бесконечного радиуса — прямую. Прямые и собственные окружности называются окружностями ненулевого радиуса[15].
Если радиус окружности устремить к бесконечности, то она вырождается в окружность бесконечного радиуса — прямую. Прямые и собственные окружности называются окружностями ненулевого радиуса[15].
Обобщающее определение окружности следующее[15]:
Две окружности называются касающимися, если они имеют только одну общую точку, а именно[15]:
На следующем рисунке показаны все случаи касания различных видов окружностей на плоскости.
Бесконечно удалённой точкой называется предел, к которому стремится точка, неограниченно удаляющаяся по прямой на плоскости в любом направлении. Бесконечно удалённая точка (любая прямая плоскости) инцидентна любой прямой плоскости (бесконечно удалённой точке). Бесконечно удалённая точка устраняет различие между окружностями и прямыми, поскольку прямые с бесконечно удалённой точкой замкнуты, они «замыкаются в бесконечности»[16].
Круговой, или расширенной, плоскостью называется плоскость, расширенная одной бесконечно удалённой точкой. Это понятие — математическая абстракция, наряду с понятием обычной бесконечной плоскости[16].
Точечным круговым преобразованием, или круговым преобразованием, или преобразованием Мёбиуса, называется преобразование круговой плоскости, отображающее прямые и окружности снова в прямые и окружности, то есть отображающее в себя множество всех окружностей ненулевого радиуса[4][13].
Множество всех точечных круговых преобразований совпадает с множеством дробно-линейных преобразований[17].
Группой точечных круговых преобразований называется множество всех точечных круговых преобразований, а также множество всех касательных круговых преобразований. Группы точечной аналлагматической геометрии и касательной аналлагматической геометрии совпадают[8].
Осева́я аналлагмати́ческая геоме́трия на расширенной плоскости — одна из трёх основных ветвей аналлагматической геометрии, изучающий свойства фигур, сохраняющихся при осевых круговых преобразованиях, то есть осевых преобразованиях, переводящих окружности в окружности[18].
Синоним:
Важно, что свойства точек аналогичны свойствам прямых, например[21]:
Окружность можно определять разными способами[21]:
Окружности и точки в осевой аналлагматической геометрии понимаются следующим образом[22]:
На следующем рисунке показаны окружность и точка, задаваемые прямыми на плоскости.
Понятие окружности приходится уточнять по той причине, что сходство между окружностью точечной аналлагматической геометрии как множеством точек и окружностью осевой аналлагматической геометрии как множеством прямых в общем случае нарушается, например, по следующим причинам[23]:
Для устранения этих нестыковок вводят следующие понятия[23]:
Две направленные окружности касаются, если их направления в общей точке совпадают. Направленная окружность и направленная прямая касаются, если их направления в общей точке совпадают. Две направленные прямые параллельны, если их направления совпадают[24].
На следующем рисунке показаны:
Цель введения направленных окружностей и прямых достигнута[25]:
Осевым преобразованием плоскости называется преобразование направленных прямых плоскости, то есть преобразования плоскости, которые отображают любую направленную прямую снова в направленную прямую. В общем случае осевое преобразование не переводит точки опять в точки: если точка — это множество проходящих через неё направленных прямых, то осевое преобразование может отобразить эту точку в некоторую кривую, задаваемую своими касательными — образами направленных прямых, проходящих через точку. Аналогично точечное преобразование отображает прямую как множество её точек в некоторую кривую, задаваемую отображёнными точками[19].
Осевым круговым преобразованием, или преобразованием Лагерра, называется осевое преобразование, отображающее любую направленную окружность ограниченного радиуса снова в направленную окружность ограниченного радиуса, то есть отображают множество касательных любой окружности снова в множество касательных некоторой окружности[19][26].
Верно следующее утверждение[27]:
Действительно, для этого множества выполняются все три аксиомы группы, так как осевые круговые преобразования — это преобразования в множестве направленных прямых плоскости[27]:
Группой осевых круговых преобразований называется множество всех осевых круговых преобразований[27].
Каса́тельная аналлагмати́ческая геоме́трия на расширенной плоскости — одна из трёх основных ветвей аналлагматической геометрии, изучающий свойства фигур, сохраняющихся при касательных круговых преобразованиях, то есть касательных преобразованиях, переводящих окружности в окружности[4][18].
Синонимы:
Точечная аналлагматическая геометрия имеет следующие особенности рассмотрения своих элементов[29]:
Осевая аналлагматическая геометрия основными элементами имеет не точки, а прямые[29]:
Касательная аналлагматическая геометрия представляет собой более общую теорию по сравнению с двумя предыдущими аналлагматическими геометриями — точечной и осевой, поскольку в ней и точки, и прямые суть частные случаи окружности. При этом по-прежнему[29]:
По причине того, что в касательной аналлагматической геометрии ни точки, ни прямые ничем не выделяются из окружностей, понимаемых в смысле этой геометрии, основной элемент здесь — линейный элемент[11].
Линейный элемент — пара геометрических образов: точка и направленная прямая, проходящая через эту точку[30][31]. Другими словами, линейный элемент — это точка и направление, заданное в этой точке. Бесконечно удалённый линейный элемент — пара геометрических образов: бесконечно удалённая точка плоскости и направление, которое определяется любой направленной прямой (параллельные прямые задают одно направление)[31].
Окружности, точки и прямые в касательной аналлагматической геометрии понимаются следующим образом[31]:
На следующем рисунке показаны направленная окружность, точка и направленная прямая, задаваемые линейными элементами.
Касающимися окружностями называются окружности, имеющие общий линейный элемент. Возможны следующие шесть разных пар геометрических элементов, представляющих собой две касающиеся окружности[32]:
Касательным преобразованием, или преобразованием Ли, называется преобразование в множестве линейных элементов, отображающее любую кривую снова в некоторую кривую, другими словами, отображающее множество линейных элементов любой направленной кривой снова в множество линейных элементов некоторой направленной кривой[30][28]. При этом, если кривые касаются, то касательное преобразование отображает их снова в касающиеся кривые. Именно это свойство переводить касательные окружности в касательные и дало название касательному преобразованию и касательной геометрии[28]. Пример касательного преобразования — Подерное преобразование[30].
Касательным круговым преобразованием, или круговым преобразованием Ли, называется преобразование в множестве линейных элементов, отображающее любую окружность снова в некоторую окружность, другими словами, отображающее множество линейных элементов любой направленной окружности снова в множество линейных элементов некоторой направленной окружности. При этом, если окружности касаются, то касательное аналлагматическое преобразование отображает их снова в касающиеся окружности. Именно это свойство переводить касательные окружности в касательные и дало название касательному круговому преобразованию и касательной круговой геометрии[28][26].
Группой точечных круговых преобразований называется множество всех касательных круговых преобразований, а также множество всех точечных круговых преобразований. Группы касательной аналлагматической геометрии и точечной аналлагматической геометрии совпадают[8].
Точечные круговые преобразования и осевые круговые преобразования суть частные случаи касательных круговых преобразований, поэтому можно считать, что точечные (осевые) круговые преобразования — это те касательные круговые преобразования, которые переводят точки в точки (прямые в прямые). Также имеются касательные круговые преобразования, точки и прямые не сохраняющие, которые можно получить, например, сделав сразу несколько как точечных, так и осевых круговых преобразования. Оказывается, верно следующее утверждение[33]:
Если в задаче Аполлония три окружности направленные, то эта задача может иметь до двух решений. Отсюда следует, что в случае ненаправленных окружностей задача Аполлония может иметь до восьми решений. Действительно, направления трёх окружностей можно выбрать шестнадцатью способами, что даёт шестнадцать направленных окружностей, которые попарно отличаются только направлением[34].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.