Loading AI tools
механизм понижения температуры атомов с помощью лазерного света Из Википедии, свободной энциклопедии
Сизи́фово охлажде́ние а́томов (англ. Sisyphus cooling) — механизм понижения температуры атомов с помощью лазерного света до температур ниже достижимых с помощью доплеровского охлаждения (~500 мкК). Охлаждение является результатом взаимодействия атомов с градиентом поляризации, созданной двумя распространяющимися навстречу лазерными пучками с ортогональной линейной поляризацией. Атомы, летящие в направлении световой волны в результате спонтанного перехода с верхнего на нижний уровень «одетого» состояния (dressed state) теряют кинетическую энергию. В результате чего температура атомов снижается на два порядка в сравнении с температурой, получаемой доплеровским охлаждением (~10 мкК).
Для того, чтобы понять механизм охлаждения атома с помощью сизифового процесса, необходимо привлечь следующие физические процессы:
Атом, помещённый во внешнее электрическое поле , меняет свою энергию. В результате энергетические уровни атома смещаются на величину , где — электрический дипольный момент атома. Этот эффект называется эффектом Штарка. Аналогичное поведение у атома наблюдается в переменном электрическом поле, в том числе при освещении светом, его называют «переменным Штарк-эффектом» (в англоязычной литературе — AC-Stark effect):
где — частота Раби,
Модельная энергетическая структура атома показана на Рис. 2. Из этой диаграммы видно, что переходы между уровнями под действием света в зависимости от его поляризации происходят с разной вероятностью.
Вероятность переходов между уровнями и под действием света с круговой поляризацией равна единице, тогда как вероятность переходов между уровнями и в три раза меньше (1/3).
В случае возбуждения линейно-поляризованным светом уровней и вероятность перехода составляет (2/3).
Когда в атомном паре распространяются две линейно поляризованные волны, ортогональные к друг другу и движущиеся навстречу друг другу, атом видит суммарную поляризацию с весьма своеобразным поведением, см. Рис. 3.
В точке О поляризация будет линейной, затем в точке она превратится в круговую, вращающуюся в левую сторону. При дальнейшем движении атома наступит черёд линейной поляризации (повёрнутой на 90° относительно исходной, точка ) и право-круговой (точка . В поляризация вернётся к исходной линейной, но с задержкой на 180 градусов). Период полной смены поляризации равен .
Описанный градиент поляризации приведет к тому, что в разных точках пространства движущийся атом будет иметь разный световой сдвиг уровней.
Рассмотрим пример для света, частота которого меньше частоты перехода (см. Рис. 4.):
Предположим, что в момент включения лазерного излучения атомы, движущиеся вдоль оси OZ находятся в точке λ/8. В этой точке лево-поляризованый свет вызовет вынужденные переходы атома между уровнями и . Время жизни атома в возбуждённом состоянии для щелочных металлов ≈ 30 нс, после этого произойдёт спонтанное возвращение атома на исходный или другой (в соответствии с правилами отбора) уровень. В рассматриваемом случае среди возможных путей распада есть такой, который приведет к потере энергии, а именно: .
Атом окажется в потенциальной яме перехода , образовавшейся вследствие светового сдвига. Атом при этом спонтанном переходе с излучением фотона в случайном направлении теряет энергию, приобретённую вследствие поглощения фотона в направлении −OZ, то есть из-за анизотропии процесса составляющая скорости атома вдоль оси OZ уменьшится. Несколько другой баланс по энергии будет наблюдаться при другом переходе.
Атомы, попав на уровень , будут продолжать двигаться и при этом взбираться на образовавшуюся вследствие светового сдвига потенциальную горку, теряя кинетическую энергию (замедляясь). В точке атом совершит под действием право-круговой поляризации вынужденный переход с уровня на уровень , а оттуда спонтанно распадётся на уровень , то он потеряет (излучив) энергию . После этого атом снова начнёт подниматься на потенциальную горку, теряя энергию, пока снова в точке процесс снова повторится.
Теоретические исследования охлаждения атомов лазерным светом были начаты в 1970-х годах. Первым был теоретически разработан процесс так называемого доплеровского охлаждения атомов. В работе В. С. Летохова и др. (1977)[1] было показано, что доплеровское охлаждение позволяет понизить температуру атомов до значения , определяемого естественной полушириной линии резонансного оптического перехода атомов. В 1980-х годах экспериментальные исследования охлаждения атомов с помощью лазерного света стали горячей темой в области фундаментальных физических исследований. К концу 1980-х атомы удалось охладить значительно ниже температуры, предсказываемой теорией доплеровского охлаждения. Необходимо было объяснить расхождения между теорией и экспериментом. Такое объяснение было дано в 1989 году (см. литературу) группой французских физиков во главе с Клодом Коэн-Тануджи (англ. C. Cohen-Tannouudji). Это было сделано с помощью механизма «сизифова охлаждения» (или градиента поляризации — второе название механизма).
Механизм охлаждения был назван авторами в честь героя греческой мифологии Сизифа, который затаскивал камень на вершину горы, с которой камень потом падал вниз и Сизифу приходилось снова и снова вновь подымать его. Это продолжалось бесконечно.
В 1997 году за цикл работ по охлаждению атомов, в частности, за объяснение cизифова механизма охлаждения французскому ученому Клоду Коэн-Тануджи была присуждена Нобелевская премия по физике.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.