Loading AI tools
величина, характеризующая скорость изменения функции Из Википедии, свободной энциклопедии
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю (при условии, что такой предел существует). Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.
В классическом дифференциальном исчислении производная чаще всего определяется через понятие предела, однако исторически теория пределов появилась позже дифференциального исчисления. Исторически производная вводилась кинематически (как скорость) или геометрически (определяясь по сути наклоном касательной, в разных конкретных формулировках). Ньютон называл производную флюксией, обозначая точкой над символом функции, школа Лейбница предпочитала в качестве базового понятия дифференциал[1].
Русский термин в форме «производная функция» впервые употребил В. И. Висковатов, переведя на русский язык соответствующий французский термин dérivée, используемый французским математиком Лагранжем[2].
Пусть в некоторой окрестности точки определена функция Производной функции называется такое число , что функцию в окрестности можно представить в виде
если существует.
Пусть в некоторой окрестности точки определена функция Производной функции в точке называется предел, если он существует,
Заметим, что последнее обычно обозначает производную по времени (в теоретической механике и физике, исторически часто тоже).
Производные степенных функций | Производные тригонометрических функций | Производные обратных тригонометрических функций | Производные гиперболических функций |
---|---|---|---|
Производная функции в точке , будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция является дифференцируемой в точке тогда и только тогда, когда её производная в этой точке существует и конечна:
Для дифференцируемой в функции в окрестности справедливо представление
Если функция имеет конечную производную в точке то в окрестности её можно приблизить линейной функцией
Функция называется касательной к в точке Число является угловым коэффициентом (угловым коэффициентом касательной) или тангенсом угла наклона касательной прямой.
Тангенс можно рассматривать как масштабирующий коэффициент или коэффициент сравнения: насколько изменение ординаты больше изменения абсциссы. Если тангенс равен 1, то зависимое переменное изменяется настолько же, насколько изменяется независимое. Если тангенс равен нулю, значит изменение независимой переменной не приводит к изменению зависимой переменной.
Изначально (в геометрических задачах) тангенс является безразмерной величиной (длина противолежащего катета ∕ длина прилежащего катета, м∕м), но применительно к вычислению производной тангенс может иметь размерность, например, скорость тела есть путь∕время, т. е. м∕с.
Пусть — закон прямолинейного движения. Тогда выражает мгновенную скорость движения в момент времени . Новая функция также имеет производную. Эта т. н. вторая производная, обозначается как , а функция выражает мгновенное ускорение в момент времени
Вообще производная функции в точке выражает скорость изменения функции в точке , то есть скорость протекания процесса, описанного зависимостью
Понятие производной произвольного порядка задаётся рекуррентно. Полагаем
Если функция дифференцируема в , то производная первого порядка определяется соотношением
Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда
В частности, вторая производная является производной от производной:
Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).
Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,
Класс функций, у которых производная -порядка является непрерывной, обозначается как .
В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:
Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.
Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и тех же объектов:
где обозначает функцию знака. А если то а следовательно не существует.
Для непрерывных функций на отрезке , дифференцируемых на интервале справедливы:
Лемма Ферма. Если принимает максимальное или минимальное значение в точке и существует , то .
Теорема о нуле производной. Если принимает на концах отрезка одинаковые значения, то на интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Формула конечных приращений. Для найдётся точка , такая что .
Теорема Коши о среднем значении. Если не равна нулю на интервале , то найдётся такая точка , что .
Правило Лопиталя. Если или , причём для всякого из некоторой проколотой окрестности и существует , то .
Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если — постоянное число и — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
, то
Следующие свойства производной служат дополнением к правилам дифференцирования:
Функция | Производная | Примечание |
---|---|---|
Доказательство
| ||
Доказательство
| ||
Доказательство | ||
Доказательство
| ||
Доказательство
| ||
Доказательство 1
Доказательство 2
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство Найти производную арксинуса можно при помощи взаимно обратных функций. | ||
Доказательство Найти производную арккосинуса можно при помощи данного тождества: | ||
Доказательство Найти производную арктангенса можно при помощи взаимнообратной функии: | ||
Доказательство Найти производную арккотангенса можно при помощи данного тождества: | ||
Доказательство Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
| ||
Доказательство Найти производную арккосеканса можно при помощи данного тождества: | ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Доказательство
| ||
Определим производную вектор-функции по параметру:
Если производная в точке существует, вектор-функция называется дифференцируемой в этой точке. Координатными функциями для производной будут .
Свойства производной вектор-функции (всюду предполагается, что производные существуют):
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.