Тетрация
итерационная функция экспоненты, следующий гипероператор после возведения в степень Из Википедии, свободной энциклопедии
Тетра́ция (гиперопера́тор-4) в математике — итерационная функция экспоненты, следующий гипероператор после возведения в степень. Тетрация используется для описания больших чисел.
Термин «тетрация», состоящий из слов «тетра-» (четыре) и «итерация» (повторение), был впервые применён английским математиком Рубеном Гудстейном в 1947 году[1].
Определения
Суммиров вкратце
Перспектива
Тетрация как степенная башня
Для любого положительного вещественного числа и неотрицательного целого числа , тетрацию можно определить рекуррентно:
Согласно данному определению, вычисление тетрации, записанной как «степенная башня», возведение в степень начинается с самых дальних уровней к начальному (в данной системе обозначений, с самого наивысшего показателя степени):
Или:
При этом, так как возведение в степень не является ассоциативной операцией, то вычисление выражения в другом порядке приведёт к другому ответу:
Или:
Таким образом, степенные башни должны вычисляться сверху вниз (или справа налево), то есть, иначе говоря, они обладают правой ассоциативностью.
Тетрация как гипероператор

Предел при является положительным вещественным решением уравнения (то есть, ). Предела не существует, когда , так как максимум функции это . Поэтому значений для нет. Предел неопределён, когда , так как вид функции на этом промежутке зависит от того, какое число n — чётное или нечётное. Так, например, когда n чётное, предел в нуле равен 1, а когда n нечётное, предел равен 0 (это следует из того, что ).
Тетрация является четвёртой по счёту гипероперацией:
- сложение:
- умножение:
- возведение в степень:
- тетрация:
Здесь каждая операция является итерацией предыдущей.
Свойства
Суммиров вкратце
Перспектива
- Тетрация не считается элементарной функцией (за исключением случаев с постоянным натуральным показателем, когда тетрация выражается в виде степенной башни постоянной высоты).
- В силу некоммутативности тетрация имеет две обратных операции — суперлогарифм и суперкорень (аналогично тому, как возведение в степень имеет две обратные функции: арифметический корень и логарифм).
Тетрация это один из примеров функции с гиперболическим ростом, тоесть абсолютная скорость роста значения пропорциональна квадрату значения, это выглядит так: , проще говоря рост увеличевается с дополнительным ускорением. Для функции верно следующее: .
Для тетрации в общем случае неверны следующие характерные для предыдущих операторов свойства:
- , например: , но .
- не равно ни , ни , например: , так как .
Примечание: однако, верно или .
- Тетрация минус единицы равна минус единице:
Терминология
Суммиров вкратце
Перспектива
Существует несколько терминов для определения понятия тетрация и за каждым из них стоит своя логика, но некоторые из них не стали общепринятыми в силу тех или иных причин. Ниже приведено несколько подобных примеров.
- Термин «тетрация», использованный Рубеном Гудстейном в 1947 году в работе «Transfinite Ordinals in Recursive Number Theory» (обобщение рекуррентных представлений в теореме Гудстейна, используемых для высших операторов), имеет доминирующее положение в терминологии. Также этот термин был популяризован в работе Руди Руккера (англ. Rudy Rucker) «Infinity and the Mind».
- Термин «супервозведение в степень» (англ. superexponentiation) был опубликован Бромером (англ. Bromer) в его работе «Superexponentiation» в 1987 году.[2] Данный термин был ранее использован Эдом Нельсоном (англ. Ed Nelson) в его книге «Предикативная Арифметика» (англ. «Predicative Arithmetic»)[3].
- Термин «гиперстепень» (англ. hyperpower)[4] есть естественная комбинация понятий «гипер-» и «степень», который подходящим образом описывает тетрацию. Проблема лежит в понятии самого термина «гипер» относительно иерархии гипероператоров. Когда мы рассматриваем гипероператоры, термин «гипер» относится ко всем рангам, а термин «супер» относится к рангу 4, или тетрации. Таким образом, при данных обстоятельствах, понятие «гиперстепень» может ввести в заблуждение, так как оно относится только к понятию тетрация.
- Термин «степенная башня» (англ. power tower)[5] иногда используется, в форме «степенная башня порядка » для .
Тетрацию также часто путают с другими тесно связанными функциями и выражениями. Ниже приведено несколько связанных терминов:
В первых двух выражениях есть основание, и количество появляющихся есть высота. В третьем выражении, есть высота, но все основания разные.
Обозначения
Суммиров вкратце
Перспектива
Системы записи, в которых тетрация может быть использована (некоторые из них позволяют использование даже более высоких итераций), включают в себя:
Одна из вышеприведённых систем использует систему записи итерированных экспонент; в общем случае это определяется следующим образом:
Не так много обозначений существует для итерированных экспонент, но несколько из них показаны ниже:
Примеры
В нижеприведённой таблице большинство значений слишком огромны, чтобы их записать в экспоненциальном представлении, по этой причине используется система записи в виде итерационных экспонент, чтобы представить их с основанием 10. Значения, содержащие десятичную запятую, являются приблизительными. Например, четвёртая тетрация от 3 (то есть ) начинается цифрами 1258, заканчивается цифрами 39387 и имеет 3638334640025 цифр, последовательность A241292 в OEIS. Примечание: Если не отличается от 10 по порядку величины, то для всех с высокой точностью выполняется . Например, для основания при и получаем , и разность становится значительно меньше для значений .
Открытые проблемы
- Неизвестно, может ли быть рациональным числом, если — целое число, большее 3, а — рациональное, но не целое число (для ответ отрицателен)[6].
- Ни для какого целого не известно, является ли положительный корень уравнения рациональным, алгебраическим иррациональным или трансцендентным числом.
Примечания
- Goodstein R. L. Transfinite ordinals in recursive number theory (неопр.) // Journal of Symbolic Logic[англ.]. — 1947. — Т. 12. — doi:10.2307/2266486.
- Bromer N. Superexponentiation (англ.) // Mathematics Magazine : magazine. — 1987. — Vol. 60, no. 3. — P. 169—174. — . Архивировано 27 января 2017 года.
- Nelson E. Predicative Arithmetic. — Princeton University Press, 1986.
- MacDonnell J. F. Somecritical points of the hyperpower function (англ.) // International Journal of Mathematical Education : journal. — 1989. — Vol. 20, no. 2. — P. 297—305.
- Weisstein, Eric W. Power Tower (англ.) на сайте Wolfram MathWorld.
- Marshall, Ash J., and Tan, Yiren, «A rational number of the form aa with a irrational», Mathematical Gazette 96, March 2012, pp. 106—109. Дата обращения: 28 апреля 2013. Архивировано 6 мая 2014 года.
Ссылки
- Сайт про тетрацию Эндрю Робинса.
- Сайт про тетрацию Даниэля Гэйслера.
- Форум по обсуждению тетрации.
- Кузнецов Д. Тетрация как специальная функция // Владикавказский математический журнал. — 2010.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.