итерационная функция экспоненты, следующий гипероператор после возведения в степень Из Википедии, свободной энциклопедии
Тетра́ция (гиперопера́тор-4) в математике — итерационная функция экспоненты, следующий гипероператор после возведения в степень. Тетрация используется для описания больших чисел.
Термин «тетрация», состоящий из слов «тетра-» (четыре) и «итерация» (повторение), был впервые применён английским математиком Рубеном Гудстейном в 1947 году[1].
Для любого положительного вещественного числа и неотрицательного целого числа , тетрацию можно определить рекуррентно:
Согласно данному определению, вычисление тетрации, записанной как «степенная башня», возведение в степень начинается с самых дальних уровней к начальному (в данной системе обозначений, с самого наивысшего показателя степени):
Или:
При этом, так как возведение в степень не является ассоциативной операцией, то вычисление выражения в другом порядке приведёт к другому ответу:
Или:
Таким образом, степенные башни должны вычисляться сверху вниз (или справа налево), то есть, иначе говоря, они обладают правой ассоциативностью.
Предел при является положительным вещественным решением уравнения (то есть, ). Предела не существует, когда , так как максимум функции это . Поэтому значений для нет. Предел неопределён, когда , так как вид функции на этом промежутке зависит от того, какое число n — чётное или нечётное. Так, например, когда n чётное, предел в нуле равен 1, а когда n нечётное, предел равен 0 (это следует из того, что ).
Тетрация является четвёртой по счёту гипероперацией:
Здесь каждая операция является итерацией предыдущей.
Тетрация это один из примеров функции с гиперболическим ростом, тоесть абсолютная скорость роста значения пропорциональна квадрату значения, это выглядит так: , проще говоря рост увеличевается с дополнительным ускорением. Для функции верно следующее: .
Для тетрации в общем случае неверны следующие характерные для предыдущих операторов свойства:
Примечание: однако, верно или .
Существует несколько терминов для определения понятия тетрация и за каждым из них стоит своя логика, но некоторые из них не стали общепринятыми в силу тех или иных причин. Ниже приведено несколько подобных примеров.
Тетрацию также часто путают с другими тесно связанными функциями и выражениями. Ниже приведено несколько связанных терминов:
Форма | Терминология |
---|---|
Тетрация | |
Итерационные экспоненты | |
Вложенные экспоненты (также башни) | |
Бесконечные экспоненты (также башни) |
В первых двух выражениях есть основание, и количество появляющихся есть высота. В третьем выражении, есть высота, но все основания разные.
Системы записи, в которых тетрация может быть использована (некоторые из них позволяют использование даже более высоких итераций), включают в себя:
Имя | Форма | Описание |
---|---|---|
Стандартная форма записи | Использована Мауером (Maurer) [1901] и Гудштейном [1947]; популяризовано в книге Руди Рюкера «Infinity and the Mind». | |
Стрелочная нотация Кнута | Позволяет удлинение путём добавления добавочных или индексированных стрелочек, является более мощным способом. | |
Цепочка Конвея | Позволяет удлинение путём прибавления 2 (эквивалентно вышеописанному способу), но также возможно даже более мощный способ записи, если увеличивать цепочку. | |
Функция Аккермана | Допускает особый случай в записи в терминах функции Аккермана. | |
Итерируемая экспоненциальная форма записи | Позволяет простое удлинение до итерационных экспонент начиная со значений отличных от 1. | |
Обозначения Хусменд (англ. Hooshmand)[6] | ||
Система записи гипероператорами | Позволяет удлинение путём прибавления 4; это даёт семейство гипероператоров. | |
Система записи ASCII | a^^n |
Так как запись стрелочка наверх используется идентично обозначению корректурного знак вставки (^ ), оператор тетрация может быть записан в виде (^^ ). |
Массивная нотация Бауэрса, Бауэрса/Бёрда[7] | {a, b,2} | {a, b, c} = a^^^…^^^b (c стрелок сверхстепени). |
Одна из вышеприведённых систем использует систему записи итерированных экспонент; в общем случае это определяется следующим образом:
Не так много обозначений существует для итерированных экспонент, но несколько из них показаны ниже:
Имя | Форма | Описание |
---|---|---|
Стандартная форма записи | Система записи и итерационная система записи была введена Эйлером. | |
Стрелочная нотация Кнута | Позволяет для суперстепеней и суперэкспоненциальных функций увеличивать число стрелочек. | |
Гипер-Е нотация | E(a)x#n | |
Система записи Иоанна Галидакиса (англ. Ioannis Galidakis) | Допускает использование больших выражений в основании.[8] | |
ASCII (добавочный) | a^^n@x |
Основана на взгляде, что итерационная экспонента есть добавочная тетрация. |
ASCII (стандартный) | exp_a^n(x) |
Основана на стандартной форме записи. |
Infinity barrier notation | Джонатан Бауэрс придумал это [9], и это можно подставить к более высоким гипероперациям |
В нижеприведённой таблице большинство значений слишком огромны, чтобы их записать в экспоненциальном представлении, по этой причине используется система записи в виде итерационных экспонент, чтобы представить их с основанием 10. Значения, содержащие десятичную запятую, являются приблизительными. Например, четвёртая тетрация от 3 (то есть ) начинается цифрами 1258, заканчивается цифрами 39387 и имеет 3638334640025 цифр, последовательность A241292 в OEIS.
1 | 1 | 1 | 1 | 1 |
2 | 4 | 16 | 65 536 | |
3 | 27 | 7 625 597 484 987 | ||
4 | 256 | |||
5 | 3125 | |||
6 | 46 656 | |||
7 | 823 543 | |||
8 | 16 777 216 | |||
9 | 387 420 489 | |||
10 | 10 000 000 000 |
Примечание: Если не отличается от 10 по порядку величины, то для всех с высокой точностью выполняется . Например, для основания при и получаем , и разность становится значительно меньше для значений .
Seamless Wikipedia browsing. On steroids.