Loading AI tools
итерационная функция экспоненты, следующий гипероператор после возведения в степень Из Википедии, свободной энциклопедии
Тетра́ция (гиперопера́тор-4) в математике — итерационная функция экспоненты, следующий гипероператор после возведения в степень. Тетрация используется для описания больших чисел.
Термин «тетрация», состоящий из слов «тетра-» (четыре) и «итерация» (повторение), был впервые применён английским математиком Рубеном Гудстейном в 1947 году[1].
Для любого положительного вещественного числа и неотрицательного целого числа , тетрацию можно определить рекуррентно:
Согласно данному определению, вычисление тетрации, записанной как «степенная башня», возведение в степень начинается с самых дальних уровней к начальному (в данной системе обозначений, с самого наивысшего показателя степени):
Или:
При этом, так как возведение в степень не является ассоциативной операцией, то вычисление выражения в другом порядке приведёт к другому ответу:
Или:
Таким образом, степенные башни должны вычисляться сверху вниз (или справа налево), то есть, иначе говоря, они обладают правой ассоциативностью.
Предел при , является положительным вещественным решением уравнения . Тоесть, . Предела не существует когда , так как максимум функции это e (число). Поэтому значений для нет. Предела также не существует когда .
Тетрация является четвёртой по счёту гипероперацией:
Здесь каждая операция является итерацией предыдущей.
Для тетрации в общем случае неверны следующие характерные для предыдущих операторов свойства:
Примечание: однако, верно или .
Существует несколько терминов для определения понятия тетрация и за каждым из них стоит своя логика, но некоторые из них не стали общепринятыми в силу тех или иных причин. Ниже приведено несколько подобных примеров.
Тетрацию также часто путают с другими тесно связанными функциями и выражениями. Ниже приведено несколько связанных терминов:
Форма | Терминология |
---|---|
Тетрация | |
Итерационные экспоненты | |
Вложенные экспоненты (также башни) | |
Бесконечные экспоненты (также башни) |
В первых двух выражениях есть основание, и количество появляющихся есть высота. В третьем выражении, есть высота, но все основания разные.
Системы записи, в которых тетрация может быть использована (некоторые из них позволяют использование даже более высоких итераций), включают в себя:
Имя | Форма | Описание |
---|---|---|
Стандартная форма записи | Использована Мауером (Maurer) [1901] и Гудштейном [1947]; популяризовано в книге Руди Рюкера «Infinity and the Mind». | |
Стрелочная нотация Кнута | Позволяет удлинение путём добавления добавочных или индексированных стрелочек, является более мощным способом. | |
Цепочка Конвея | Позволяет удлинение путём прибавления 2 (эквивалентно вышеописанному способу), но также возможно даже более мощный способ записи, если увеличивать цепочку. | |
Функция Аккермана | Допускает особый случай в записи в терминах функции Аккермана. | |
Итерируемая экспоненциальная форма записи | Позволяет простое удлинение до итерационных экспонент начиная со значений отличных от 1. | |
Обозначения Хусменд (англ. Hooshmand)[6] | ||
Система записи гипероператорами | Позволяет удлинение путём прибавления 4; это даёт семейство гипероператоров. | |
Система записи ASCII | a^^n |
Так как запись стрелочка наверх используется идентично обозначению корректурного знак вставки (^ ), оператор тетрация может быть записан в виде (^^ ). |
Массивная нотация Бауэрса, Бауэрса/Бёрда[7] | {a, b,2} | {a, b, c} = a^^^…^^^b (c стрелок сверхстепени). |
Одна из вышеприведённых систем использует систему записи итерированных экспонент; в общем случае это определяется следующим образом:
Не так много обозначений существует для итерированных экспонент, но несколько из них показаны ниже:
Имя | Форма | Описание |
---|---|---|
Стандартная форма записи | Система записи и итерационная система записи была введена Эйлером. | |
Стрелочная нотация Кнута | Позволяет для суперстепеней и суперэкспоненциальных функций увеличивать число стрелочек. | |
Гипер-Е нотация | E(a)x#n | |
Система записи Иоанна Галидакиса (англ. Ioannis Galidakis) | Допускает использование больших выражений в основании.[8] | |
ASCII (добавочный) | a^^n@x |
Основана на взгляде, что итерационная экспонента есть добавочная тетрация. |
ASCII (стандартный) | exp_a^n(x) |
Основана на стандартной форме записи. |
Infinity barrier notation | Джонатан Бауэрс придумал это [9], и это можно подставить к более высоким гипероперациям |
В нижеприведённой таблице большинство значений слишком огромны, чтобы их записать в экспоненциальном представлении, по этой причине используется система записи в виде итерационных экспонент, чтобы представить их с основанием 10. Значения, содержащие десятичную запятую, являются приблизительными. Например, четвёртая тетрация от 3 (то есть ) начинается цифрами 1258, заканчивается цифрами 39387 и имеет 3638334640025 цифр, последовательность A241292 в OEIS.
1 | 1 | 1 | 1 | 1 |
2 | 4 | 16 | 65 536 | |
3 | 27 | 7 625 597 484 987 | ||
4 | 256 | |||
5 | 3125 | |||
6 | 46 656 | |||
7 | 823 543 | |||
8 | 16 777 216 | |||
9 | 387 420 489 | |||
10 | 10 000 000 000 |
Примечание: Если не отличается от 10 по порядку величины, то для всех с высокой точностью выполняется . Например, для основания при и получаем , и разность становится значительно меньше для значений .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.