Loading AI tools
векторная физическая величина, характеризующая темп (скорость) изменения ускорения тела Из Википедии, свободной энциклопедии
Рыво́к — векторная физическая величина, характеризующая темп (скорость) изменения ускорения тела. Является третьей производной по времени от радиус-вектора.
Рывок | |
---|---|
Размерность | LT −3 |
Единицы измерения | |
СИ | м/с3 |
СГС | см/с3 |
Другие единицы | g/с |
Примечания | |
векторная величина |
Вектор рывка в любой момент времени находится путём дифференцирования вектора ускорения частицы по времени:
где:
Соответственно формулы для движения с постоянным рывком имеют вид:
Формулы можно обобщать и далее на более высокие производные радиус-вектора, вводя в разложение координаты в степенной ряд всё новые и новые члены. По традиции или просто для удобства из-за частого использования первые 3 коэффициента в разложении имеют собственные названия: скорость, ускорение и рывок соответственно.
Сила, действующая на ускоренно движущийся заряд (радиационное трение, или реакция излучения), пропорциональна третьей производной координаты (т. e. первой производной ускорения) по времени.
(в системе СИ).
Понятие рывка применяется при перевозке пассажиров, а также хрупких и ценных грузов.
Пассажир приспосабливается к ускорению, напрягая мышцы и подбирая позу. При небольшом изменении ускорения = при небольшом рывке поза, естественно, тоже меняется. Пассажиру нужно дать время, чтобы отреагировать и сменить её — иначе стоячий пассажир потеряет равновесие, а сидячий — ударится. Типичный пример — момент полной остановки вагона метро после процесса торможения: стоячие пассажиры, наклонившиеся назад в процессе торможения, не успевают приспособиться к новому ускорению, возникающему в момент остановки, и наклоняются вперёд.
Аналогично, груз, к которому приложено ускорение, деформируется. Частое и быстрое изменение ускорения означает частую и быструю деформацию, что может привести к разрушению хрупкого груза. Частично рывок можно уменьшить амортизирующей упаковкой.
Для многих приборов и устройств в технических условиях нормируется предельное значение рывка.
Производные большего порядка в транспорте применяются редко. Известный случай, когда радиус-вектор рассчитывался до четвёртой производной — это вывод телескопа «Хаббл» на орбиту[1].
Применяется в интегрировании по Верле для быстрого численного решения дифференциальных уравнений движения материальных точек.
В статье И. И. Смульского и Я. И. Смульского «Астероид Апофис: эволюция орбиты и возможное использование» используются производные до шестого порядка и ряд Маклорена в программе расчёта[источник не указан 4311 дней].
В работе финского математика К. Зундмана, посвящённой решению «задачи трёх тел», используются высшие производные и ряды[источник не указан 4311 дней].
Понятие рывка находит применение и в задаче о вычислении угловых скоростей и угловых ускорений звеньев шарнирного четырёхзвенника — в ситуации, когда все шарниры лежат на одной прямой[2].
В металлорежущих станках с электронным управлением изменение ускорения также важно — быстрые деформации инструмента, случающиеся при высоком рывке, преждевременно выводят инструмент из строя.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.