Пересече́ние мно́жеств в теории множеств — это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Пересечение двух множеств и обычно обозначается , но в редких случаях может обозначаться [1].
Определение
Пересечение двух множеств
Пусть даны множества и . Тогда их пересечением называется множество
Пересечение семейства множеств
Пусть дано семейство множеств Тогда его пересечением называется множество, состоящее из элементов, которые входят во все множества семейства:
Свойства
- Пересечение множеств является бинарной операцией на произвольном булеане ;
- Операция пересечения множеств коммутативна
- Операция пересечения множеств ассоциативна:
- Операция пересечения множеств дистрибутивна относительно операции объединения:[2]
- Универсальное множество является нейтральным элементом операции пересечения множеств:
- Операция пересечения множеств идемпотентна:
- Если — пустое множество, то
Пример
Пусть , . Тогда
Примечания
См. также
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.