Loading AI tools
положительное целое число, которое не может быть выражено как сумма всех собственных делителей любого целого положительного числа Из Википедии, свободной энциклопедии
Неприкоснове́нное число́ (англ. Untouchable number) — положительное целое число, которое не может быть выражено как сумма всех собственных делителей любого целого положительного числа (в том числе самого неприкосновенного числа).
Например, число 4 не является неприкосновенным, так как оно равно сумме собственных делителей числа 9: 1 + 3 = 4. Число 5 является неприкосновенным, так как его нельзя выразить в виде суммы собственных делителей любого натурального числа: 5 = 1 + 4 — единственный способ, чтобы написать 5 в виде суммы различных натуральных чисел, включая 1, но если 4 — делитель числа, 2 также является его делителем, так что 1 + 4 не может быть суммой всех собственных делителей любого числа (так как перечень делителей должен содержать как 4, так и 2).
Первые 53 неприкосновенных числа[1]:
Считается, что 5 — единственное нечётное число из неприкосновенных, но это не было доказано. Это должно следовать из немного усиленного варианта гипотезы Гольдбаха[2]. Таким образом, представляется, что, кроме 2 и 5, все неприкосновенные числа составные. Совершенные числа не могут быть неприкосновенными, так как они могут быть выражены как сумма своих собственных делителей.
Пал Эрдёш доказал, что множество неприкосновенных чисел бесконечно[3].
Не существует неприкосновенных чисел, которые бы были на единицу больше, чем простое число, так как если р — простое число, то сумма собственных делителей р2 будет р + 1. Кроме того, не существует неприкосновенных чисел, за исключением 5, равных простому числу плюс три, так как если р — простое число, не равное двум, то сумма собственных делителей 2р будет р + 3.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.