Нейро́нный проце́ссор (англ. Neural Processing Unit, NPU или ИИ-ускоритель англ. AI accelerator) — это специализированный класс микропроцессоров и сопроцессоров (часто являющихся специализированной интегральной схемой), используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта[1].

Описание

Суммиров вкратце
Перспектива

Нейронные процессоры относятся к вычислительной технике и используются для аппаратного ускорения эмуляции работы нейронных сетей и цифровой обработки сигналов в режиме реального времени. Как правило, нейропроцессор содержит регистры, блоки памяти магазинного типа, коммутатор и вычислительное устройство, содержащее матрицу умножения, дешифраторы, триггеры и мультиплексоры[2].

На современном этапе (по состоянию на 2017 год) к классу нейронных процессоров могут относиться разные по устройству и специализации типы чипов, например:

История

Области применения

Thumb
Nvidia Drive PX-series[англ.].

Примеры

Существующие продукты

Thumb
16-ядерный чип Adapteva Epiphany (E16G301) на одноплатном компьютере для параллельных вычислений.
  • Процессоры машинного зрения:
  • Тензорные процессоры:
    • Google TPU (англ. Tensor Processing Unit) — представлен как ускоритель для системы Google TensorFlow, которая широко применяется для свёрточных нейронных сетей. Сфокусирован на большом объёме арифметики 8-битной точности[5].
    • Huawei Ascend 310 / Ascend 910 — первые два чипа оптимизированные под решения задач искусственного интеллекта из линейки Ascend компании Huawei[13].
    • Intel Nervana NNP[англ.] (англ. Neural Network Processor) — это первый коммерчески доступный тензорный процессор, предназначенный для постройки сетей глубокого обучения[14], компания Facebook была партнёром в процессе его проектирования[15][16].
    • Qualcomm Cloud AI 100 — ускоритель искусственного интеллекта, предназначенный для использования в составе облачных платформ, поддерживающий программные библиотеки PyTorch, Glow, TensorFlow, Keras и ONNX[17].
  • Нейроморфные процессоры:
    • IBM TrueNorth — нейроморфный процессор, построенный по принципу взаимодействия нейронов, а не традиционной арифметики. Частота импульсов представляет интенсивность сигнала. По состоянию на 2016 год среди исследователей ИИ нет консенсуса, является ли это правильным путём для продвижения[18], но некоторые результаты являются многообещающими, с продемонстрированной большой экономией энергии для задач машинного зрения[19].
  • Adapteva Epiphany[англ.] — предназначен как сопроцессор, включает модель блокнотной памяти[англ.] сети на кристалле[англ.], подходит к модели программирования потоком информации, которая должна подходить для многих задач машинного обучения.
  • ComBox x64 Movidius PCIe Blade board — плата расширения PCI Express с максимальной плотностью VPU Intel Movidius (MyriadX) для инференса сверхточных нейронных сетей в ЦОД
  • Cambricon MLU100 — карта расширения PCI Express с ИИ-процессором мощностью 64 TFLOPS с половинной точностью или 128 TOPS для вычислений INT8[20].
  • Cerebras Wafer Scale Engine (WSE, CS-1) — экспериментальный суперпроцессор компании Cerebras, содержит 1,2 трлн транзисторов, организованных в 400 000 ИИ-оптимизированных вычислительных ядер и 18 Гбайт локальной распределённой памяти SRAM, и всё это связано ячеистой сетью с общей производительностью 100 петабит в секунду. Чип Cerebras ― это фактически суперкомпьютер на чипе, где вычислительные ядра SLAC (Sparse Linear Algebra Cores) ― полностью программируемые и могут быть оптимизированы для работы с любыми нейронными сетями[21].
  • KnuPath[англ.] — процессор компании KnuEdge[англ.], предназначен для работы в системах распознавания речи и прочих отраслях машинного обучения, он использует соединительную технологию LambdaFabric и позволяет объединять в единую систему до 512 тысяч процессоров[22].

GPU-продукты

Thumb
Nvidia Tesla C870.
  • Nvidia Tesla — серия специализированных GPGPU-продуктов компании Nvidia[23]:
    • Nvidia Volta[англ.] — графические процессоры (GPU) архитектуры Volta (2017 год) компании Nvidia (такие как Volta GV100), содержат до 640 специальных ядер для тензорных вычислений[1].
    • Nvidia Turing[англ.] — графические процессоры архитектуры Turing (2018 год) компании Nvidia (такие как Nvidia TU104), содержат до 576 специальных ядер для тензорных вычислений[24].
    • Nvidia DGX-1 — специализированный сервер, состоящий из 2 центральных процессоров и 8 GPU Nvidia Volta GV100[англ.] (5120 тензорных ядер), связанных через быструю шину NVLink[25]. Специализированная архитектура памяти[англ.] у этой системы является особенно подходящей для построения сетей глубокого обучения[26][27].
  • AMD Radeon Instinct[англ.] — специализированная GPGPU-плата компании AMD, предлагаемая как ускоритель для задач глубокого обучения[28][29].

ИИ-ускорители в виде внутренних сопроцессоров (аппаратных ИИ-блоков)

Thumb
6-ядерный SoC Apple A11 Bionic с Neural Engine

Научные исследования и разрабатываемые продукты

  • Индийский технологический институт в Мадрасе разрабатывает ускоритель на импульсных нейронах для новых систем архитектуры RISC-V, направленных на обработку больших данных на серверных системах[34].
  • Eyeriss[англ.] — разработка, направлена на свёрточные нейронные сети с применением блокнотной памяти и сетевой архитектуры в пределах кристалла.
  • Fujitsu DLU[англ.] — многоблочный и многоядерный сопроцессор компании Fujitsu использующий вычисления с низкой точностью и предназначенный для глубокого машинного обучения[35].
  • Intel Loihi[англ.] — нейроморфный процессор компании Intel, который сочетает процессы обучения, тренировки и принятия решений в одном чипе, позволяя системе быть автономной и «сообразительной» без подключения к облаку. Например, при обучении с помощью базы данных MNIST (Mixed National Institute of Standards and Technology) процессор Loihi оказывается в 1 млн раз лучше, чем другие типичные спайковые нейронные сети[36].
  • Kalray[англ.] — показала MPPA[англ.][37] и сообщила о повышении эффективности свёрточных нейронных сетей в сравнении с GPU.
  • SpiNNaker — массово-параллельная компьютерная архитектура, которая сочетает ядра традиционной ARM-архитектуры с усовершенствованной сетевой структурой, специализированной для моделирования крупной нейронной сети.
  • Zeroth NPU[англ.] — разработка компании Qualcomm, направленная непосредственно на привнесение возможностей распознавания речи и изображений в мобильные устройства[38].
  • TPU H — тензорный процессор, над созданием которого работает[39][40] российская компания «ХайТэк». В октябре 2020 года были опубликованы результаты[41][42] тестирования архитектуры ускорителя расчета нейронных сетей TPU H, проведенного международным консорциумом MLPerf (учрежден в 2018 году Baidu, Google, Harvard University, Stanford University, University of California, Berkeley).

Примечания

Ссылки

Wikiwand - on

Seamless Wikipedia browsing. On steroids.