Remove ads
позиционная система счисления по целочисленному основанию 10 Из Википедии, свободной энциклопедии
Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев на руках у человека.
Индо-арабская | |
---|---|
Арабская Тамильская Бирманская |
Кхмерская Лаосская Монгольская Тайская |
Восточноазиатские | |
Китайская Японская Сучжоу Корейская |
Вьетнамская Счётные палочки |
Алфавитные | |
Абджадия Армянская Ариабхата Кириллическая Греческая |
Грузинская Эфиопская Еврейская Акшара-санкхья |
Другие | |
Вавилонская Египетская Этрусская Римская Дунайская |
Аттическая Кипу Майяская Эгейская Символы КППУ |
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60 | |
Нега-позиционная | |
Симметричная | |
Фибоначчиева | |
Единичная (унарная) |
Один десятичный разряд называется децит (decit) (сокращение от decimal digit).
Один десятичный разряд в десятичной системе счисления (децит) иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления (дециту) соответствует один десятичный триггер.
Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:
Обычно для ненулевого числа x требуют, чтобы старшая цифра в десятичном представлении x была также ненулевой.
Например, число сто три представляется в десятичной системе счисления в виде:
С помощью n позиций в десятичной системе счисления можно записать целые числа от 0 до , то есть, всего различных чисел.
Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:
где n — число разрядов целой части числа, m — число разрядов дробной части числа.
В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Двоично-десятичные числа требуют большего количества битов для своего хранения[1]. Так, четыре двоичных разряда имеют 16 состояний, и при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются[2].
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Одноразрядное двухоперандное (двухаргументное) десятичное сложение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный полусумматор".
Десятичной функцией в теории функциональных систем и в десятичной логике называют функцию типа , где — десятичное множество, а — неотрицательное целое число, которое называют арностью или местностью функции.
Всего существует простейших бинарных с бинарным (двухразрядным) результатом десятичных логических функций (2 децита -> 2 децита), где m - количество аргументов функции (входная "-арность"), а n - количество результатов действия функции (выходная "-арность"), что больше всех больших чисел Дирака вместе взятых и числа Шеннона (оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном, составляет приблизительно ) впридачу.
Одноразрядное двухоперандное (двухаргументное) десятичное сложение можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "одноразрядное десятичное бинарное сложение по модулю 10" и "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении".
Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).
Номер функции "одноразрядное десятичное бинарное сложение по модулю 10" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного полусумматора: 8765432109 7654321098 6543210987 5432109876 4321098765 3210987654 2109876543 1098765432 0987654321 9876543210 (пробелы отделяют по 10 знаков в номере функции).
Номер функции "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного полусумматора: 1111111110 1111111100 1111111000 1111110000 1111100000 1111000000 1110000000 1100000000 1000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).
Так как в разряде переноса не бывает значения больше 1, то разряд переноса в одноразрядном десятичном полусумматоре является более простой десятичной функцией с унарным (одноразрядным) двоичным результатом (2 децита -> 1 бит).
'Half Adder Decimal Single-Digit
CLS
DATA 0,1,2,3,4,5,6,7,8,9
DATA 1,2,3,4,5,6,7,8,9,0
DATA 2,3,4,5,6,7,8,9,0,1
DATA 3,4,5,6,7,8,9,0,1,2
DATA 4,5,6,7,8,9,0,1,2,3
DATA 5,6,7,8,9,0,1,2,3,4
DATA 6,7,8,9,0,1,2,3,4,5
DATA 7,8,9,0,1,2,3,4,5,6
DATA 8,9,0,1,2,3,4,5,6,7
DATA 9,0,1,2,3,4,5,6,7,8
DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,0,0,0,0,0,0,0,0,1
DATA 0,0,0,0,0,0,0,0,1,1
DATA 0,0,0,0,0,0,0,1,1,1
DATA 0,0,0,0,0,0,1,1,1,1
DATA 0,0,0,0,0,1,1,1,1,1
DATA 0,0,0,0,1,1,1,1,1,1
DATA 0,0,0,1,1,1,1,1,1,1
DATA 0,0,1,1,1,1,1,1,1,1
DATA 0,1,1,1,1,1,1,1,1,1
DEFINT I,J,F,A,B
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DSM[I,J] 'Function 2-argument Decimal Summ Mod 10 NonSymmetric
NEXT J
NEXT I
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DC[I,J] 'Function 2-argument Decimal Carry Summ 10 NonSymmetric
NEXT J
NEXT I
A=9
B=9
PRINT USING "#";A;
PRINT " + ";
PRINT USING "# = ";B;
PRINT USING "#";F2DC[A,B];
PRINT USING "#";F2DSM[A,B]
END
× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
3 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
4 | 0 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
6 | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
7 | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
8 | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
9 | 0 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |
Одноразрядное двухоперандное (двухаргументное) десятичное умножение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный умножитель".
Одноразрядный двухоперандный (двухаргументный) десятичный умножитель можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "младший разряд одноразрядного десятичного бинарного умножения" и "старший разряд одноразрядного десятичного бинарного умножения".
Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).
Номер функции "младший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного умножения: 1234567890 2468024680 3692581470 4826048260 5050505050 6284062840 7418529630 8642086420 9876543210 0000000000 (пробелы отделяют по 10 знаков в номере функции).
Номер функции "старший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного умножения: 8765432100 7654432100 6544322100 5443321100 4433221100 3322211000 2221110000 1111100000 0000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).
'Multiplier Decimal Single-Digit
CLS
DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,1,2,3,4,5,6,7,8,9
DATA 0,2,4,6,8,0,2,4,6,8
DATA 0,3,6,9,2,5,8,1,4,7
DATA 0,4,8,2,6,0,4,8,2,6
DATA 0,5,0,5,0,5,0,5,0,5
DATA 0,6,2,8,4,0,6,2,8,4
DATA 0,7,4,1,8,5,2,9,6,3
DATA 0,8,6,4,2,0,8,6,4,2
DATA 0,9,8,7,6,5,4,3,2,1
DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,0,0,0,0,1,1,1,1,1
DATA 0,0,0,0,1,1,1,2,2,2
DATA 0,0,0,1,1,2,2,2,3,3
DATA 0,0,1,1,2,2,3,3,4,4
DATA 0,0,1,1,2,3,3,4,4,5
DATA 0,0,1,2,2,3,4,4,5,6
DATA 0,0,1,2,3,4,4,5,6,7
DATA 0,0,1,2,3,4,5,6,7,8
DEFINT I,J,F,A,B
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DMULT1[I,J] 'Function 2-argument Decimal Multiplier NonSymmetric 1-st Digit
NEXT J
NEXT I
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DMULT2[I,J] 'Function 2-argument Decimal Multipliqer NonSymmetric 2-nd Digit
NEXT J
NEXT I
A=9
B=9
PRINT USING "#";A;
PRINT " x ";
PRINT USING "# = ";B;
PRINT USING "#";F2DMULT2[A,B];
PRINT USING "#";F2DMULT1[A,B]
END
Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления).
В другой великой цивилизации — вавилонской с её шестидесятеричной системой — за две тысячи лет до н. э. внутри позиционных шестидесятеричных разрядов использовалась непозиционная (аддитивная) десятичная система счисления с единичным кодированием десятичных цифр[3]. Египетская десятичная система повлияла на аналогичную систему в первых европейских системах письма, таких как критские иероглифы, линейное письмо А и линейное письмо Б.
Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.
Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось иное название — «арабская» (арабские цифры).
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[4], так и не числовых записей в двоичной системе кодирования[5]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[6]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта, как двойная запись[7].
Реализованная с помощью индоарабских цифр десятичная позиционная система счисления постепенно вытеснила римские цифры и другие непозиционные системы нумерации благодаря множеству несомненных преимуществ[8].
В стандартной десятичной системе счисления для именования больших чисел используются именные названия степеней тысячи, такие как миллион (1 000 000) и миллиард (1 000 000 000). Промежуточные степени десяти образуются прибавлением слов десять или сто, например десять миллионов (10 000 000) и сто миллиардов (100 000 000 000); другие промежуточные количества образуются прибавлением к именным названиям степеней тысячи числительных до тысячи, например сто двадцать семь миллионов (127 000 000). Для биллиона и следующих числительных есть два возможных значения: в короткой шкале каждая очередная именованная единица содержит 1000 предыдущих, а в длинной — миллион; так, биллион, следующий за миллионом, может означать как 109, так и 1012.
В Индии используется альтернативный способ именованию степеней десяти, основанный на устаревшей ведической системе счисления с основанием 100, согласно которой собственные названия имеют 103, 105 и следующие степени десяти через один, а промежуточные образуются прибавлением числительного десять. Система была официально утверждена в 1987 году и исправлена в 2002 году[9].
Число | Ведическая | Индийская | Стандартная (короткая шкала) |
---|---|---|---|
103 | хазар | хазар | тысяча |
104 | десять хазар | десять хазаров | десять тысяч |
105 | лакх | лакх | сто тысяч |
106 | ниют | десять лакхов | миллион |
107 | крор | крор | десять миллионов |
108 | рибурдх | десять кроров | сто миллионов |
109 | вранд | араб | миллиард (биллион) |
1010 | кхараб | десять арабов | десять миллиардов |
1011 | ни-кхараб | кхараб | сто миллиардов |
1012 | шанкх | десять кхарабов | триллион |
При записи чисел в индийской системе разделители размещаются в соответствии с этими наименованиями степеней: например, число, записываемое в стандартной системе как 50 801 592, в индийской будет иметь вид будет 5 08 01 592[10]. Названия лакх и крор используются в индийском диалекте английского языка (lakh, crore), хинди (लाख lākh, करोड़ karod) и других языках Южной Азии.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.