Remove ads
топологическое пространство с дополнительной структурой Из Википедии, свободной энциклопедии
CW-комплекс — тип топологического пространства с дополнительной структурой (разбиением на клетки), введённый Уайтхедом для удовлетворения нужд теории гомотопий. В литературе на русском языке употребляются также названия клеточное пространство, клеточное разбиение и клеточный комплекс. Класс клеточных комплексов является более широким, чем класс симплициальных комплексов, но в то же время сохраняет комбинаторную природу, которая позволяет производить эффективные вычисления.
Открытая n-мерная клетка — топологическое пространство, гомеоморфное открытому n-мерному шару (в частности, нульмерная клетка — это одноточечное пространство). CW-комплекс — хаусдорфово топологическое пространство X, представленное в виде объединения открытых клеток таким образом, что для каждой открытой n-мерной клетки существует непрерывное отображение f из замкнутого n-мерного шара в X, ограничение которого на внутренность шара является гомеоморфизмом на эту клетку (характеристическое отображение). При этом предполагаются выполненными два свойства:
Обозначения C и W происходят от английских слов closure-finiteness и weak topology.[1][2]
Размерность клеточного комплекса определяется как верхняя грань размерностей его клеток. n-й остов клеточного комплекса — это объединение всех его клеток, размерность которых не превосходит n, стандартные обозначения для n-го остова клеточного комплекса X — Xn или skn X. Подмножество клеточного комплекса называется подкомплексом, если оно замкнуто и состоит из целых клеток; В частности, любой остов комплекса является его подкомплексом.
Любой CW-комплекс можно построить индуктивно, посредством следующей процедуры:[3]
Сингулярные гомологии CW-комплекса можно вычислять с помощью клеточных гомологий, то есть гомологий клеточного цепного комплекса
где определяется как пустое множество.
Группа является свободной абелевой группой, образующие которой могут быть отождествлены с ориентированными n-мерными клетками CW-комплекса. Граничные отображения строятся следующим образом. Пусть — произвольная n-мерная клетка — ограничение её характеристического отображения на границу, а — произвольная (n − 1)-мерная клетка. Рассмотрим композицию
где первое отображение отождествляет с отображение — факторизация, а последнее отображение отождествляет с при помощи характеристического отображения клетки . Тогда граничное отображение
задаётся формулой
где — степень отображения и сумма берётся по всем (n − 1)-мерным клеткам .
В частности, если в клеточном комплексе нет двух клеток, размерности которых отличаются на единицу, то все граничные отображения зануляются и группы гомологий являются свободными. Например, для чётных и нулю для нечётных.
Гомотопическая категория CW-комплексов, по мнению ряда экспертов, является лучшим вариантом для построения теории гомотопии.[5] Одно из «хороших» свойств CW-комплексов — теорема Уайтхеда[англ.] (слабая гомотопическая эквивалентность между CW-комплексами является гомотопической эквивалентностью). Для любого топологического пространства существует слабо гомотопически эквивалентный ему CW-комплекс.[6] Другой полезный результат состоит в том, что представимые функторы в гомотопической категории CW-комплексов обладают простой характеризацией в категорных терминах (теорема Брауна о представимости[англ.]). Цилиндр, конус и.надстройка над CW-комплексом обладают естественной клеточной структурой.
С другой стороны, произведение CW-комплексов с естественным разбиением на клетки не всегда является CW-комплексом — топология произведения может не совпадать со слабой топологией, если оба комплекса не являются локально компактными. Однако топология произведения в категории компактно порождённых пространств совпадает со слабой топологией и всегда задаёт CW-комплекс[7]. Пространство функций Hom(X, Y) с компактно-открытой топологией, вообще говоря, не является CW-комплексом, однако, согласно теореме Джона Милнора[8], гомотопически эквивалентно CW-комплексу при условии компактности X.
Накрытие CW-комплекса X может быть наделено структурой CW-комплекса таким образом, что его клетки гомеоморфно отображаются на клетки X.
Конечные CW-комплексы (комплексы с конечным числом клеток) компактны. Любое компактное подмножество CW-комплекса содержится в конечном подкомплексе.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.