Loading AI tools
безразмерная числовая характеристика яркости объекта Из Википедии, свободной энциклопедии
Звёздная величина́ (иногда блеск) — безразмерная числовая характеристика светимости или яркости объекта, широко используемая в астрономии. Может указываться как число с пометкой m справа сверху от числа, например, 5m (от лат. magnituda — «величина»).
Существуют различные шкалы звёздных величин, однако все они имеют логарифмический вид, и в любом случае, чем ярче объект, тем ниже его звёздная величина. Отличие на 5 звёздных величин, вне зависимости от системы, соответствует отношению соответствующих показателей, равному 100, отличие на одну величину — в раза.
Видимая звёздная величина (обозначается ) характеризует освещённость, создаваемую объектом. Она описывает восприятие яркости объекта наблюдателем, что зависит не только от собственной светимости источника, но и от других условий, например, его удалённости от наблюдателя. Зависимость видимой звёздной величины от освещённости выражается формулой Погсона:
где — освещённость, создаваемая объектом, — нуль-пункт шкалы, то есть значение освещённости, для которого звёздная величина принята равной нулю, — десятичный логарифм. На практике звёздные величины обычно измеряются путём сравнения с эталонами — непеременными звёздами, освещённость от которых ранее была многократно измерена с высокой точностью. Абсолютная звёздная величина (обозначается ) характеризует собственную светимость объекта и определяется как видимая звёздная величина, которую имел бы объект, если бы наблюдался с расстояния в 10 парсек.
Поскольку у реальных звёзд и других небесных тел распределение энергии в спектре может быть разным, то в зависимости от спектрального диапазона наблюдаемые освещённости от объектов могут соотноситься по-разному. По этой причине существуют разные системы звёздных величин: чаще всего используются звёздные величины, измеренные для фильтра V, полоса пропускания которого близка к таковой у человеческого глаза.
Так, например, видимая звёздная величина самой яркой звезды ночного неба, Сириуса, составляет −1,5m, а абсолютная — +1,4m. Для Солнца видимая звёздная величина составляет −26,8m, а абсолютная — +4,8m. Видимый блеск Венеры может достигать −4,4m. Принято считать, что невооружённым глазом при благоприятных условиях на ночном небе можно видеть точечные объекты с видимой звёздной величиной максимум +6m; более тусклые объекты можно наблюдать лишь с использованием оптических приборов (биноклей, телескопов и т. п.). Космический телескоп «Хаббл» способен наблюдать тусклые объекты до +30m.
Первоначально систему звёздных величин создал Гиппарх во II веке до н. э. как деление звёзд на 6 классов, от самых ярких до самых тусклых. При этом в силу закона Вебера — Фехнера освещённости от звёзд 1-й, 2-й и последующих звёздных величин оказались распределены в убывающей геометрической прогрессии, поэтому шкала имеет логарифмический вид. В 1857 году Норман Погсон предложил современную формулу, определяющую шкалу звёздных величин.
Звёздная величина — безразмерная числовая характеристика освещённости, создаваемой объектом (видимая звёздная величина) или его светимости (абсолютная звёздная величина). Применяется к небесным телам в астрономии, может указываться как m справа сверху от числа (от лат. magnituda — «величина»), например, 5m (однако если указан диапазон спектра, то символ m обычно не указывают ― см. ниже ). Шкала звёздных величин, то есть зависимость звёздной величины от яркости или светимости, имеет логарифмический вид, а чем ярче объект, тем ниже его звёздная величина. Отличие на 5 звёздных величин соответствует изменению яркости (светимости) в 100 раз, отличие на одну величину — в раза, а у наиболее ярких объектов звёздная величина отрицательна[1], поэтому для того, чтобы явно указать на положительную звёздную величину, иногда ставят плюс, например, +0,7m. Запись звёздной величины без знака допустима и также обозначает положительную звёздную величину. Логарифмический характер зависимости обусловлен особенностями восприятия человеческого глаза и историей создания шкалы (см. ниже )[2]. Звёздная величина может быть вычислена как для точечных, так и для протяжённых объектов: в последнем случае она характеризует полную освещённость, создаваемую объектом[3].
Видимая звёздная величина (обозначается как ) характеризует освещённость, создаваемую светилом. Она описывает восприятие яркости светила наблюдателем, что зависит не только от собственной светимости источника, но и от других условий, например, его удалённости от наблюдателя. Зависимость видимой звёздной величины от освещённости выражается формулой Погсона[3][4]:
где — освещённость, создаваемая светилом, — нуль-пункт шкалы, — десятичный логарифм. Также можно связать отношение освещённостей от двух объектов и разность их звёздных величин [3][5]:
Можно записать эту же формулу в обратном виде[3]:
Таким образом, освещённости, создаваемые светилами с видимыми звёздными величинами и , отличаются в раз; отличие звёздных величин на 5m соответствует отношению освещённостей ровно в 100 раз. Множитель 2,5 в предыдущих двух формулах для и — это точное значение, не имеющее отношения к [5].
На практике звёздные величины обычно измеряются путём сравнения с эталонами — непеременными звёздами, для которых яркость ранее была многократно измерена с высокой точностью[2][6].
Абсолютная звёздная величина (обозначается ) — мера собственной светимости объекта: она не зависит от расположения наблюдателя и условий наблюдения. Она определяется как видимая звёздная величина, которую имел бы объект, если бы наблюдался с расстояния в 10 парсек (пк) в отсутствие межзвёздного поглощения (см. ниже )[2][7].
Освещённость , создаваемая светилом, обратно пропорциональна квадрату расстояния до наблюдателя. Из этого можно получить связь между видимой и абсолютной звёздной величиной светила[8][9]:
Величина также называется модулем расстояния. Часто встречается следующий вид записи этой формулы, допустимый при условии, что выражается в парсеках[8]:
Расстояние в парсеках следующим образом выражается через модуль расстояния[10]:
Приведённые формулы верны в отсутствие межзвёздного поглощения (см. ниже )[10].
Для тел Солнечной системы, кроме Солнца, — планет, астероидов и других объектов — абсолютную величину принято определять иным образом и обозначать . Она определяется как видимая звёздная величина, которую бы имел объект, если бы находился на расстоянии в 1 а.е. от Солнца и от наблюдателя, с фазовым углом 0°[11], то есть в условиях, когда наблюдается освещённая половина объекта, ― описанная комбинация на практике недостижима. Для пересчёта видимой звёздной величины в абсолютную в этом случае необходимо не только учесть расстояния между объектом, Солнцем и наблюдателем, но и наблюдаемую фазу и зависимость видимой звёздной величины от фазы. Абсолютная величина, которая вычисляется по результатам наблюдений в разное время, может отличаться в зависимости от ориентации объекта в пространстве, например, если тело имеет форму, отличную от сферической, поэтому часто используют усреднённое значение[12].
Разные приёмники излучения, в том числе человеческий глаз, улавливают не весь поток электромагнитного излучения от источника, а только его определённую часть и имеют разную чувствительность к свету с разной длиной волны. Распределение энергии в спектре у различных источников может отличаться, поэтому и при наблюдении в разных длинах волн соотношение видимых яркостей объектов будет различным. Поэтому для разных инструментов с разными оптическими фильтрами могут использоваться разные системы звёздных величин, определённые по различным эталонам, и у них может отличаться нуль-пункт[10][13].
Эта проблема возникла с развитием астрономической фотографии в XIX веке. Так, человеческий глаз наиболее чувствителен к излучению на длине волны около 550 нм, а фотоэмульсия, которая использовалась в астрономической фотографии, по сравнению с глазом более чувствительна к синему цвету и менее — к красному. Это приводило к тому, что видимая звёздная величина двух звёзд могла быть одинаковой при визуальных наблюдениях, но отличаться при фотографических, или наоборот: например, более голубые звёзды оказывались более яркими при фотографических наблюдениях. По этой причине появилось разделение на визуальную звёздную величину и фотографическую . В дальнейшем появилась возможность привести фотопластинки к полосе пропускания, близкой к таковой у человеческого глаза — связанная с ними система звёздных величин получила название фотовизуальной и обозначение [2][14].
Позже, приборы с зарядовой связью обеспечили гораздо более высокую точность измерения потоков излучения и лучшую стандартизацию, поэтому актуальными стали системы звёздных величин именно для них[14]. Например, популярность получила фотометрическая система UBV (система Джонсона), разработанная в 1950-х годах, в которой определены три полосы пропускания: U, B и V (от англ. Ultraviolet, Blue, Visual), соответствующие ультрафиолетовому диапазону, синему и жёлтому цветам, позже эта система была расширена с добавлением красного и инфракрасного фильтров R и I (от англ. Red, Infrared). Полоса пропускания V очень близка к визуальной, а B — к фотографической. Этими же символами обозначаются и сами звёздные величины, и чаще всего используется звёздная величина (также записывается как )[2][10]. Нуль-пункт в этой системе установлен таким образом, чтобы звёзды спектрального класса A0 во всех полосах имели одну и ту же звёздную величину, а для Веги во всех полосах она равна +0,03[13][15][16].
Показателем цвета называют разность звёздных величин в двух разных полосах — различные показатели цвета характеризуют распределение энергии в спектре звезды[1]. Широко употребимые показатели цвета ― B−V и U−B, то есть разность звёздных величин в фильтрах B и V, а во втором случае ― U и B. Система UBV определена таким образом, чтобы у звёзд спектрального класса A0 звёздная величина была одинакова во всех полосах, поэтому эти показатели цвета у таких звёзд равны нулю. Звёзды более ранних спектральных классов (O и B) имеют отрицательные показатели цвета B−V и U−B и более голубой цвет, у звёзд более поздних спектральных классов более красный цвет и показатели цвета положительны[17][18].
В случае, когда измеряется поток энергии от объекта во всём электромагнитном спектре, говорят о болометрической звёздной величине (или, если речь об абсолютной звёздной величине, то ). На практике измерение потока во всём электромагнитном спектре — сложная задача, поэтому часто используют понятие болометрической поправки , которая связывает визуальную звёздную величину (или в полосе V) и болометрическую[19][20] (хотя вместо полосы V может использоваться и другая полоса[21]).
Вид выражения для болометрической поправки имеет две альтернативных формы, при которых болометрические поправки отличаются знаком[19][20][22][23]:
где — видимая, а — абсолютная звёздная величина в полосе V. Для определённости далее будет приниматься первая формула[19][22].
Помимо этого, до принятия в 2015 году резолюции B2 Международного астрономического союза в ходу были разные шкалы болометрической звёздной величины с различным нуль-пунктом. Согласно этой резолюции, в качестве нуль-пункта шкалы абсолютных болометрических звёздных величин принимается светимость ровно 3,0128⋅1028 Вт, а видимых — освещённость, которую создаёт изотропно излучающий источник на расстоянии в 10 парсек, что составляет около 2,518⋅10−8 Вт/м2. Нуль-пункт был выбран таким образом, чтобы абсолютная болометрическая звёздная величина Солнца была близка к +4,74m — широко используемое значение к моменту принятия резолюции[24].
Среди более ранних шкал в некоторых случаях принималось, что болометрическая поправка для Солнца равна нулю. В другой шкале болометрическая поправка была принята равной нулю для звёзд спектрального класса F5, которые излучают наибольшую долю энергии в видимом диапазоне: в этом случае болометрическая звёздная величина будет всегда на 0,07m ярче, чем если принимать для Солнца. Также в этом случае болометрическая поправка была всегда отрицательна или равна нулю (если принимать ), либо, если принимать , то всегда положительна или равна нулю. Во всех случаях нуль-пункт шкалы болометрических звёздных величин ярче, чем нуль-пункт шкалы видимых звёздных величин: для всех звёзд какая-то часть излучения не попадает в видимый диапазон, даже для тех, для которых приравниваются и [19][20][22][23].
Болометрическая поправка зависит от температуры звезды. Для звёзд солнечного типа она близка к нулю, в то время как для звёзд более ранних и более поздних спектральных классов отрицательна, так как более горячие звёзды излучают значительную долю энергии в ультрафиолетовом диапазоне, а более холодные ― в инфракрасном. Так, например, для звёзд спектрального класса B0 болометрическая поправка составляет −3,0m, для звёзд класса M0 ― −1,2m[21].
Начиная с системы UBV, распространены шкалы звёздных величин, в которых за нуль-пункт для любой полосы принимается освещённость, которую в этой полосе создаёт Вега[25], то есть при таком определении звёздная величина Веги равна нулю в любой полосе. Однако у такой системы имеются и недостатки: в частности, распределение энергии в спектре Веги не плоское, особенно вне оптического диапазона, поэтому нет физического смысла приводить нуль-пункт во всех полосах именно к потоку от Веги[26].
Более поздняя система звёздных величин AB[англ.] (от англ. ABsolute[7]) связывает нуль-пункт с определённым значением спектральной плотности потока излучения в любом спектральном диапазоне, а именно — приблизительно 3631 Ян[27]. Более строго, звёздная величина на частоте связана со спектральной плотностью потока на этой частоте, выраженной в эрг/(с · см2 · Гц)[16][28]:
Константа выбрана таким образом, чтобы у гипотетического источника излучения с , постоянной для всех , величина (одинаковая для всех ) равнялась величине . Тогда равняется нулю при около 3631 Ян = 3,63⋅10−20 эрг/(с · см2 · Гц)[29], что соответствует спектральной плотности потока энергии от Веги на длине волны 5546 ангстрем[27][28]. Так, например, фотометрическая система ugriz, используемая в обзоре SDSS, основана на системе AB[7]. В фотометрической системе космического телескопа Gaia применяется нуль-пункт как в системе AB, так и в системе Веги[30][31].
В системе ST (также STMAG) нуль-пункт связан с плотностью потока энергии на единицу длины волны, а не частоты, как в системе AB. Нуль-пункт соответствует спектральной плотности потока 3,63⋅10−9 эрг/(с · см2 · Å). Звёздная величина на длине волны связана со спектральной плотностью потока на этой длине волны, выраженной в эрг/(с · см2 · Å)[16][25][29]:
Эта система используется, например, в фотометрических данных телескопа Хаббл. Для перевода между системами ST и AB можно использовать следующее соотношение[16]:
следовательно[16],
где — скорость света[16].
В следующей таблице приведены видимые звёздные величины для некоторых небесных тел, а также абсолютные звёздные величины для некоторых объектов. Для объектов Солнечной системы приведена звёздная величина, соответствующая наибольшей возможной яркости[32][33].
Объект | ||
---|---|---|
Солнце | −26,7 | +4,8 |
Луна (в полнолунии) | −12,7 | |
Венера | −4,7 | |
Юпитер | −2,7 | |
Меркурий | −2,2 | |
Марс | −2,0 | |
Сириус | −1,46 | +1,5 |
Вега | +0,03 | +0,6 |
Бетельгейзе | +0,50 | −5,0 |
Сатурн | +0,7 | |
Полярная | 2,0 | −4,6 |
Галактика Андромеды | 3,4 | −21,1 |
Ганимед | 4,6 | |
Уран | 5,5 | |
Предельная величина объектов, видимых невооружённым глазом[комм. 1][10] | ~6 | |
Нептун | 7,8 | |
Галактика Сомбреро | 8,1 | −22 |
Титан | 8,3 | |
Проксима Центавра | 11,01 | |
Плутон | 15,1 | |
Предельная величина объектов, наблюдаемых телескопом «Хаббл»[34] | 30 |
Поверхностная яркость — величина, используемая в астрономии при исследовании протяжённых объектов, таких как галактики. Она также часто выражается при помощи системы звёздных величин, например, в звёздных величинах с квадратной секунды дуги (обозначение: m/☐′′). Если обозначить как поверхностную яркость, выраженную в звёздных величинах на единицу телесного угла, связь и имеет вид . Так, например, в фильтре B типичное значение поверхностной яркости в центре спиральных галактик составляет 22m на квадратную секунду дуги. Поверхностная яркость фона ночного неба в зените при хороших условиях наблюдения может составлять 22,5—23m на квадратную секунду дуги[35].
Поглощение света в атмосфере Земли частицами пыли и некоторыми молекулами приводит к ослаблению видимого блеска небесных тел и зависит различных условий. Относительная толщина атмосферного слоя, через который проходит луч света, с учётом плотности атмосферы, называется воздушной массой; она влияет на величину ослабления и зависит от высоты светила над горизонтом (в зените воздушная масса равна единице), поэтому меняется в течение суток. Кроме того, свет на разных длинах волн поглощается по-разному: в оптическом диапазоне сильнее всего поглощается синяя и фиолетовая части спектра[36]. Типичное значение поглощения единичной воздушной массой в фильтре V составляет 0,2m[37]. Для того, чтобы корректно сравнивать различные наблюдения, делается поправка на атмосферное поглощение: его измеряют, наблюдая объекты на разной высоте над горизонтом и в различных фильтрах, и в каталогах приводят исправленную величину[15][38].
Наличие межзвёздной пыли в диске Галактики также приводит к межзвёздному поглощению. Проходя через пылевую среду, свет частично поглощается и видимая звёздная величина светила оказывается слабее, чем была бы в отсутствие поглощения; при неучёте этого эффекта его абсолютная звёздная величина светила будет недооценена. С учётом поглощения связь между видимой и абсолютной звёздной величиной (см. выше ) принимает вид[10][39]:
где — межзвёздное поглощение. Его величина для одного и того же объекта зависит от длины волны: в более коротких волнах поглощение сильнее. Пусть объект наблюдается в фильтрах B и V; его абсолютные звёздные величины в этих фильтрах — и соответственно, а межзвёздное поглощение в этих фильтрах — и . Тогда наблюдаемый показатель цвета выражается так[39]:
где — собственный показатель цвета, который бы наблюдался в отсутствие поглощения, а — избыток цвета. Иными словами, межзвёздное поглощение приводит также к межзвёздному покраснению[40]. В фильтрах B и V для различных звёзд наблюдается следующее соотношение между поглощением и избытком цвета: [39].
Если оптическая толщина среды постоянна вдоль луча зрения, то пропорционально пройденному расстоянию: , где — поглощение на единицу расстояния. Поскольку пыль в нашей Галактике распределена в слое с относительно небольшой толщиной, около 100 парсек, межзвёздное поглощение сильно зависит от направления. Так, для полосы V принимают, что в плоскости диска Галактики среднее поглощение составляет около 2m на килопарсек. В то же время в направлении вблизи галактических полюсов полное поглощение может составлять меньше 0,1m вдоль всего луча зрения, вне зависимости от расстояния[41].
Диаграмма Герцшпрунга — Рассела широко используется для представления зависимости между абсолютной звёздной величиной и спектральным классом звёзд, или другими величинами, тесно связанными с этими параметрами; например, вместо спектрального класса может использоваться показатель цвета[42]. Неравномерное распределение наблюдаемых звёзд на этой диаграмме отражает особенности их образования и эволюции[43].
Понятие звёздной величины впервые использовал Гиппарх в II веке до н. э. для сравнительной глазомерной оценки видимой яркости звёзд. Он разделил видимые невооружённым глазом звёзды на 6 «величин» в зависимости от их яркости: к 1-й величине были отнесены самые яркие звёзды, к 6-й — самые тусклые[3][1].
Согласно психофизическому закону Вебера — Фехнера, человеческие органы чувств, в том числе и глаз, передают ощущения в нелинейной зависимости от внешнего раздражения. Если воздействие изменяется в геометрической прогрессии, то ощущение передаётся в арифметической прогрессии, поэтому и освещённости, создаваемые звёздами 1-й, 2-й и последующих звёздных величин, оказались распределены в геометрической прогрессии[3]. Иными словами, отклик на возмущение зависит от него логарифмически, и, например, если освещённости, создаваемые тремя звёздами, относятся как 1:10:100, то визуально покажется, что между первой и второй звёздами такое же отличие по яркости, как между второй и третьей[5].
В середине XIX века были проведены измерения энергии излучения, приходящего от звёзд. Выяснилось, что в системе Гиппарха разность в 5 звёздных величин грубо соответствует отношению освещённостей в 100 раз. В 1857 году Норман Погсон предложил принять это соотношение как основу шкалы звёздных величин; таким образом она приняла современный вид[3]. Тем не менее предположения о том, что шкала звёздных величин имеет логарифмический характер, выдвигались и ранее: в частности, об этом упоминали Эдмунд Галлей в 1720 году и Джон Гершель в 1829-м[44].
Современное определение звёздной величины (см. вышеЯкобус Каптейн в 1902 году. Это понятие получило популярность после того, как в 1911 году Эйнар Герцшпрунг опубликовал диаграмму «абсолютная звёздная величина — показатель цвета», которая позднее стала известна как диаграмма Герцшпрунга — Рассела. В 1922 году Международный астрономический союз утвердил это определение абсолютной звёздной величины[7].
) изначально предложилС развитием фотоэлектрических приборов в фотометрии в 1950-х годов появлялись стандартизированные системы звёздных величин, начиная с системы UBV Джонсона: сначала она была разработана для оптического диапазона, а затем, к 1966 году, была расширена в инфракрасную часть спектра. По мере того как ПЗС-матрицы вытесняли остальные приёмники излучения в астрономии, потребовалась некоторая адаптация систем и методов, в частности, стандартизация приёмников излучения[15].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.