Loading AI tools
запоминающее устройство Из Википедии, свободной энциклопедии
Жёсткий диск (накопитель на жёстких магнитных ди́сках, НЖМД, англ. hard (magnetic) disk drive, HDD, HMDD) — запоминающее устройство (устройство хранения информации, накопитель) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров[1] , хотя в современных ноутбуках и неттопах, например, часто используются только SSD.
Жёсткий диск | |
---|---|
| |
Медиафайлы на Викискладе |
В отличие от гибкого диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины[англ.], покрытые слоем ферромагнитного материала, чаще всего диоксида хрома, магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[2]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.
Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.
Со второй половины 2000-х годов получили распространение более производительные твердотельные накопители, вытесняющие дисковые накопители из ряда применений несмотря на более высокую стоимость единицы хранения; жёсткие диски при этом, по состоянию на середину 2010-х годов, получили широкое распространение как недорогие и высокоёмкие устройства хранения как в потребительском сегменте, так и корпоративном.
По одной из версий[3][4], название «винчестер» (англ. Winchester) накопитель получил благодаря работавшему в фирме IBM Кеннету Хотону (англ. Kenneth E. Haughton), руководителю проекта, в результате в 1973 году был выпущен жёсткий диск модели IBM 3340[англ.], впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 мегабайт каждый, что по созвучию совпало с обозначением популярного охотничьего оружия — винтовки Winchester Model 1894, использующего винтовочный патрон .30-30 Winchester. Также существует версия, что название произошло исключительно из-за названия патрона, также выпускавшегося Winchester Repeating Arms Company, первого созданного в США боеприпаса для гражданского оружия «малого» калибра на бездымном порохе, который превосходил патроны старых поколений по всем показателям и немедленно завоевал широчайшую популярность[5].
В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слова «винт»[6] (иногда — «винч»[7]).
Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.[источник не указан 685 дней]
С конца 1990-х на рынке устройств хранения информации начали применяться головки на основе эффекта гигантского магнитного сопротивления (ГМС)[8][9].
С начала 2000-х головки на основе эффекта ГМС стали заменяться на головки на основе туннельного магниторезистивного эффекта (в них изменение магнитного поля приводит к изменению сопротивления в зависимости от изменения напряжённости магнитного поля; подобные головки позволяют увеличить вероятность достоверности считывания информации, особенно при больших плотностях записи информации). В 2007 году устройства на основе туннельного магниторезистивного эффекта с оксидом магния (эффект открыт в 2005 году) полностью заменили устройства на основе эффекта ГМС.[источник не указан 685 дней]
По оценкам экспертов конца 2020 года, в ближайшие годы производители жёстких дисков будут переходить на технологию записи с локальным разогревом магнитных пластин (HAMR), для которой, как считается, лучше подходят стеклянные пластины, а не алюминиевые, так как стекло без появления дефектов сможет выдержать локальный нагрев до 700 °C, тогда как термостойкость алюминия ограничена 200 °C[10].
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Метод продольной записи — технология CMR (англ. Conventional Magnetic Recording) это «обычная» магнитная запись, биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей — доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от направления намагниченности.
Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.
Метод перпендикулярной записи — технология PMR (англ. Perpendicular Magnetic Recording), при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Предыдущий метод записи, параллельно поверхности магнитной пластины, привёл к тому, что в определённый момент инженеры упёрлись в «потолок» — дальше увеличивать плотность информации на дисках было невозможно. И тогда вспомнили о другом способе записи, который был известен ещё с 1970-х годов.[источник не указан 685 дней]
Плотность записи при этом методе резко возросла — более чем на 30 % ещё на первых образцах (на 2009 год — 400 Гбит/дюйм², или 62 Гбит/см²[11]). Теоретический предел отодвинулся на порядки и составляет более 1 Тбит/дюйм².
Жёсткие диски с перпендикулярной записью стали доступны на рынке с 2006 года[12]. В 2023 году Seagate заявила, что после выпуска HDD на PMR объёмом 24 TB технология себя изживёт, а дальнейшее развитие останется за «черепичной» магнитной записью (SMR) и магнитной записью с подогревом (HAMR)[13][14].
Метод черепичной магнитной записи[англ.] (англ. Shingled Magnetic Recording, SMR) был реализован в начале 2010-х годов. В нём используется тот факт, что ширина области чтения меньше, чем ширина записывающей головки. Запись дорожек в этом методе производится с частичным наложением в рамках групп дорожек (пакетов). Каждая следующая дорожка пакета частично закрывает предыдущую (подобно черепичной кровле), оставляя от неё узкую часть, достаточную для считывающей головки. По своей специфике она радикально отличается от более популярных технологий записи CMR и PMR[15][16][17].
Черепичная запись увеличивает плотность[англ.] записанной информации (технология применяется производителями жестких дисков для повышения плотности записи данных, что позволяет им умещать большее количество информации на каждой пластине винчестера), однако осложняет перезапись — при каждом изменении требуется полностью перезаписать весь пакет перекрывающихся дорожек. Технология позволяет увеличить ёмкость жёстких дисков на 15—20 % в зависимости от конкретной реализации; при этом не лишена недостатков, главный из которых — низкая скорость записи/перезаписи, что критично при использовании в настольных компьютерах. Официально технология черепичной магнитной записи применяется главным образом в НЖМД для центров обработки данных (ЦОД), используется для архивов и приложений типа WORM (write once, read many), где редко необходима перезапись.[источник не указан 685 дней]
Компании WD и Toshiba в конце 2010-х намеренно скрывали информацию об использовании в ряде своих накопителей, ориентированных на потребительский сегмент, технологии SMR; её использование приводит к несовместимости накопителей с некоторыми моделями файловых серверов и к невозможности их объединения в RAID-массивы[18], а также к падению скорости произвольной записи. Кроме того, ошибки в прошивке некоторых SMR-дисков WD приводили к потере данных при использовании файловой системы ZFS[19][20]. Что касается третьего крупнейшего производителя жёстких дисков, Seagate, она сообщала об использовании SMR в документации к некоторым дискам, но скрывала её в случае других[18][21].
Метод тепловой магнитной записи (англ. HAMR, Heat-Assisted Magnetic Recording) остаётся перспективным, продолжаются его доработки и внедрение. В этом методе используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/см²[22]. Специалисты Hitachi называют предел для этой технологии в 2,3—3,1 Тбит/см², а представители Seagate Technology — 7,75 Тбит/см²[23]. Seagate, используя данную технологию, выпустила в 2018 году жёсткий диск объёмом 16 ТБ[24], а в 2023 году приступила к коммерческим поставкам HDD объёмом 30 ТБ[25][26] и более[27][28].
В 2006 году, под руководством Джимми Жу (англ. Jimmy Zhu), Университет Карнеги — Меллона начинает разработку технологии магнитной записи с вспомогательным микроволновым излучением (англ. MAMR, Microwave-Assisted Magnetic Recording)[29]. В 2008 году технологию предложили Hitachi, которая за 2 года так и не смогла добиться успехов и обратилась за помощью к специалистам исследовательского центра NEDO[англ.]. В 2010 году были достигнуты первые результаты практической реализации MAMR[30], доказавшие перспективы развития технологии. В 2012 году Hitachi продает технологию Western Digital, которая к 2015 году разрабатывает головку, поддерживающую технологию MAMR, в основе которой лежит генератор спинового момента[англ.][31].
В 2017 году, в ответ на технологию HAMR, Western Digital первой заявила о планах освоения микроволновой поддержкой записи[32], однако, по состоянию на 2019 год, так и не смогла наладить серийное производство[33][34]. В это же время Toshiba пообещала выпуск HDD 18 ТБ с технологией MAMR в 2019 году[35], но также не смогла их реализовать, перенеся поставки на март 2021 года[36][37].
Структурированный (паттернированный) носитель данных (BPM — (англ. Bit-Patterned Media) — перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.[источник не указан 685 дней]
По данным Toshiba, технология структурированного носителя позволит повысить плотность записи жёстких дисков до 2,5 терабит на квадратный дюйм, что составит 25 терабайт для 3,5-дюймового жёсткого диска.
В октябре 2011 года группа физиков из Национального университета Сингапура показала возможность создания носителей данных с плотностью записи до 3,3 терабита на квадратный дюйм. В рамках этого исследования с помощью существенно упрощённого техпроцесса был создан прототип носителя
Жёсткий диск состоит из гермозоны и блока электроники.[источник не указан 685 дней]
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Гермозона включает в себя корпус из прочного сплава, дискообразные пластины с магнитным покрытием (в некоторых моделях разделённые сепараторами), а также блок головок с устройством позиционирования и электропривод шпинделя.
Вопреки расхожему мнению, в подавляющем большинстве устройств внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану (в таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления (например, в самолёте) и температуры, а также при прогреве устройства во время работы.
Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.
Блок головок — пакет кронштейнов (рычагов) из сплавов на основе алюминия, совмещающих в себе малый вес и высокую жёсткость (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска.
Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла (IBM), такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну. Большинство бюджетных устройств содержит одну или две пластины, но существуют модели с бо́льшим числом пластин.
Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (от 3600 до 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска — вентильный.
Сепаратор (разделитель) — пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Устройство позиционирования головок (жарг. актуатор) представляет собой соленоидный двигатель. Он состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки (соленоида) на подвижном кронштейне блока головок. Двигатель совместно с системой считывания и обработки записанной на диск сервоинформации и контроллером (VCM controller) образует сервопривод.
Система позиционирования головок может быть и двухприводной. При этом основной электромагнитный привод перемещает блок с обычной точностью, а дополнительный пьезоэлектрический механизм совмещает головки с магнитной дорожкой с повышенной точностью.
Принцип работы двигателя заключается в следующем: обмотка находится внутри статора (обычно два неподвижных магнита), ток, подаваемый с различной силой и полярностью, заставляет её точно позиционировать кронштейн (коромысло) с головками по радиальной траектории. От скорости работы устройства позиционирования зависит время поиска данных на поверхности пластин.
В каждом накопителе существует специальная зона, называемая парковочной, — именно на ней останавливаются головки в те моменты, когда накопитель выключен либо находится в одном из режимов низкого энергопотребления. В состоянии парковки кронштейн (коромысло) блока головок находится в крайнем положении и упирается в ограничитель хода. При операциях доступа к информации (чтение/запись) одним из источников шума является вибрация вследствие ударов кронштейнов, удерживающих магнитные головки, об ограничители хода в процессе возвращения головок в нулевую позицию. Для снижения шума на ограничителях хода установлены демпфирующие шайбы из мягкой резины. Значительно уменьшить шум жёсткого диска можно программным путём, меняя параметры режимов ускорения и торможения блока головок. Для этого разработана специальная технология — Automatic Acoustic Management. Официально возможность программного управления уровнем шума жёсткого диска появилась в стандарте ATA/ATAPI-6 (для этого нужно менять значение управляющей переменной), хотя некоторые производители делали экспериментальные реализации и ранее.
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
В ранних жёстких дисках управляющая логика была вынесена на MFM- или RLL-контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.
Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.
Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок и вырабатывающую управляющие воздействия приводом типа «звуковая катушка[англ.]», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управления скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).
Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.
Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.
Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.
Для внутренних жёстких дисков:
Пропускная способность, Гбит/с | Максимальная длина кабеля, м | Требуется ли кабель питания | Количество накопителей на канал | Число проводников в кабеле | Другие особенности | |
---|---|---|---|---|---|---|
UltraATA/133 | 1,2 | 0,46 | Да (3,5") / Нет (2,5") | 2 | 40/80 | Controller+2Slave, горячая замена невозможна |
SATA-300 | 2,4 | 1 | Да | 1 | 7 | Host/Slave, возможна горячая замена на некоторых контроллерах |
SATA-600 | 4,8 | нет данных | Да | 1 | 7 | |
Ultra-320 SCSI | 2,56 | 12 | Да | 16 | 50/68 | устройства равноправны, горячая замена возможна |
SAS | 2,4 | 8 | Да | Свыше 16384 | горячая замена; возможно подключение SATA-устройств в SAS-контроллеры | |
Для внешних устройств на базе жёстких дисков, которые почти всегда создаются на базе внутренних жёстких дисков с использованием платы-переходника (преобразователя интерфейсов):
Пропускная способность, Гбит/с | Максимальная длина кабеля, м | Требуется ли кабель питания | Количество накопителей на канал | Число проводников в кабеле | Другие особенности | |
---|---|---|---|---|---|---|
FireWire/400 | 0,4 | 4,5 (до 72 м при последовательном соединении) | Да/Нет (зависит от типа интерфейса и накопителя) | 63 | 4/6 | устройства равноправны, горячая замена возможна |
FireWire/800 | 0,8 | 4,5 (до 72 м при последовательном соединении) | Да/Нет (зависит от типа интерфейса и накопителя) | 63 | 9 | устройства равноправны, горячая замена возможна |
USB 2.0 | 0,48
(реально — 0,25) |
5 (до 72 м при последовательном соединении через хабы) | Да/Нет (зависит от типа накопителя) | 127 | 4 | Host/Slave, горячая замена возможна |
USB 3.0 | 4,8 | нет данных | Да/Нет (зависит от типа накопителя) | нет данных | 9 | Двунаправленный, совместим с USB 2.0 |
Thunderbolt | 10 | |||||
Ethernet | ||||||
eSATA | 2,4 | 2 | Да | 1 (до 15 с умножителем портов) | 7 | Host/Slave, горячая замена возможна |
С целью адресации пространство поверхности пластин диска делится на дорожки — концентрические кольцевые области. Каждая дорожка делится на равные отрезки — секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.[источник не указан 685 дней]
Цилиндр — совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задаёт используемую рабочую поверхность, а номер сектора — конкретный сектор на дорожке.[источник не указан 685 дней]
Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нём. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA-1 была введена функция автоопределения геометрии (команда Identify Drive)[38].
Геометрия жёсткого диска влияет на скорость чтения/записи. Ближе ко внешнему краю пластины диска возрастает длина дорожек (умещается больше секторов, количество секторов на цилиндрах ранее было одинаковым) и, соответственно, количество данных, которые устройство может считать или записать за один оборот. При этом скорость чтения может изменяться от 210 до 30 МБ/с. Зная эту особенность, целесообразно размещать корневые разделы операционных систем именно здесь. Нумерация секторов начинается от внешнего края диска с нуля.[источник не указан 685 дней]
На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон (англ. Zoned Recording). Все дорожки одной зоны имеют одинаковое количество секторов. Однако на дорожках внешних зон секторов больше, чем на дорожках внутренних. Это позволяет, используя бо́льшую длину внешних дорожек, добиться более равномерной плотности записи, увеличивая ёмкость пластины при той же технологии производства.[источник не указан 685 дней]
Для увеличения срока службы диска на каждой дорожке могут присутствовать дополнительные резервные секторы. Если в каком-либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remapping). Данные, хранившиеся в нём, при этом могут быть потеряны или восстановлены при помощи ECC, а ёмкость диска останется прежней. Существует две таблицы переназначения: одна заполняется на заводе, другая — в процессе эксплуатации. Границы зон, количество секторов на дорожку для каждой зоны и таблицы переназначения секторов хранятся в ПЗУ блока электроники.[источник не указан 685 дней]
По мере роста ёмкости выпускаемых жёстких дисков их физическая геометрия перестала вписываться в ограничения, накладываемые программными и аппаратными интерфейсами (см.: Объём жёсткого диска). Кроме того, дорожки с различным количеством секторов несовместимы со способом адресации CHS. В результате контроллеры дисков стали сообщать не реальную, а фиктивную, логическую геометрию, вписывающуюся в ограничения интерфейсов, но не соответствующую реальности. Так, максимальные номера секторов и головок для большинства моделей берутся 63 и 255 (максимально возможные значения в функциях прерывания BIOS INT 13h), а число цилиндров подбирается соответственно ёмкости диска. Сама же физическая геометрия диска не может быть получена в штатном режиме работы (в спецификациях АТА и SCSI отсутствуют команды для этого) и другим частям системы неизвестна.[источник не указан 685 дней]
Минимальной адресуемой областью данных на жёстком диске является сектор. Размер сектора традиционно равен 512 байт[39]. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году[40].
Компания Western Digital в 2009 году сообщила о начале использования новой технологии форматирования, названной Advanced Format[41], и выпустила серию накопителей, использующих новую технологию. К этой серии относятся линейки AARS/EARS и BPVT.[источник не указан 685 дней]
Перед использованием накопителя с технологией Advanced Format для работы в Windows XP необходимо выполнить процедуру выравнивания раздела(ов) с помощью специальной утилиты[42]. Если разделы на диске создаются Windows Vista, Windows 7 и Mac OS, выравнивание не требуется[43].
В Windows Vista, Windows 7, Windows Server 2008 и Windows Server 2008 R2 присутствует ограниченная поддержка дисков с увеличенным размером сектора[44][45].
Существует два основных способа адресации секторов на диске:[источник не указан 685 дней]
При этом способе сектор адресуется по своему физическому положению на диске тремя координатами — номером цилиндра, номером головки и номером сектора. В дисках объёмом больше 528 482 304 байт (504 МБ) со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами» (смотри выше).[источник не указан 685 дней]
При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Необходимость LBA была вызвана, в частности, появлением дисков больших объёмов, которые нельзя было полностью использовать с помощью старых схем адресации.[источник не указан 685 дней]
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.[источник не указан 685 дней]
Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.[источник не указан 685 дней]
Для снижения шума жёстких дисков применяют следующие методы:[источник не указан 685 дней]
Типичные неисправности HDD[61][неавторитетный источник]:
Этот раздел не завершён. |
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Процесс производства жёстких дисков состоит из нескольких этапов:
Для нанесения магнитного покрытия заготовки перемещают в зону нанесения магнитных покрытий (расположена внутри зоны проверки, имеет класс 10).
После завершения процесса нанесения магнитных покрытий диски укладывают в кассеты и вновь перемещают в зону проверки.
На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но как минимум на каждую дорожку наносится магнитная метка, обозначающая её начало.[источник не указан 685 дней]
Существуют утилиты, способные тестировать физические секторы диска и ограниченно просматривать и править его служебные данные[62]. Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору программного обеспечения соответствующего семейства моделей[63].
Некоторые из устройств, в которых применяются жёсткие диски:[источник не указан 685 дней]
Жёсткие диски оставались популярны в течение первого десятилетия XXI века, поскольку достойной замены им на тот момент не существовало: твердотельные накопители (SSD) тогда только развивались и потому стоили дорого, вмещая при этом совсем небольшие объёмы данных. В начале 2021 года продажи SSD в штучном выражении превышали HDD в соотношении 3:2 (99 млн против 64 млн.), тем не менее, по рынку объёма хранимой памяти, HDD сохраняют лидерство в соотношении 4,5:1 (288,3 ЭБ против 61,5 ЭБ у SSD)[1]. В начале 2022-х продолжающийся рост популярности SSD как более надёжных и быстрых накопителей привёл к тому, что поставки жёстких дисков в общемировом объёме рухнули на 15 % (по отношению к 2021 году)[64][65].
Изначально на рынке было большое разнообразие жёстких дисков, производившихся множеством компаний. В связи с ужесточением конкуренции, бурным ростом ёмкости, требующим современных технологий, и понижением норм прибыли большинство производителей было либо куплено конкурентами, либо перешло на другие виды продукции.[источник не указан 685 дней]
В середине 1990-х годов существовала компания Conner Peripherals[англ.], которую впоследствии купила Seagate.[источник не указан 685 дней]
В первой половине 1990-х существовала фирма Micropolis Corporation[англ.], производившая очень дорогие SCSI-диски премиум-класса для серверов. Но при выпуске первых в отрасли винчестеров на 7200 об./мин. ею были использованы некачественные подшипники шпинделя, поставлявшиеся фирмой Nidec, и Micropolis понесла фатальные убытки на возвратах, разорилась и была полностью выкуплена компанией Seagate.[источник не указан 685 дней]
Жёсткие диски выпускала и компания NEC[66].
В 2009 году Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок настольных накопителей в 2001 году из-за массово выходившей из строя микросхемы контроллера Cirrus Logic (некачественный флюс приводил к коррозии паек). До этого жёсткие диски Fujitsu считались[кем?] лучшими в секторе настольных компьютеров[источник не указан 2530 дней], имея превосходные характеристики вращающихся поверхностей, практически без переназначенных на заводе секторов. В 2009 году производство жёстких дисков было полностью передано компании Toshiba[67].
Подразделение IBM, диски которого доселе считались практически эталонными, после роковых неудач, связанных с массовыми отказами дисков для настольных компьютеров в начале 2000-х (окислялись контакты неудачно выполненного разъёма гермоблока), купила фирма Hitachi в 2002 году[68].
Достаточно яркий след в истории жёстких дисков оставила компания Quantum Quantum Corp.[англ.], но и она в начале 2000-х потерпела неудачи, даже ещё более трагические, чем IBM и Fujitsu: в жёстких дисках Quantum серии Ĉ выходила из строя микросхема коммутатора головок, расположенная в гермоблоке диска, что приводило к весьма дорогостоящему извлечению данных с вышедшего из строя диска.[источник не указан 685 дней]
Одним из лидеров в производстве дисков являлась компания Maxtor. В 2001 году Maxtor выкупила подразделение жёстких дисков компании Quantum и тоже не избежала проблем с репутацией из-за так называемых «тонких» дисков. В 2006 году Maxtor приобрела компания Seagate[68].
Весной 2011 года производство Hitachi приобрела компания Western Digital (заводы 3,5-дюймовых дисков были переданы Toshiba в 2012 году)[69][70][71]; в то же время Samsung продала своё HDD-подразделение компании Seagate[72][73].
С 2012 года осталось три производителя HDD — Seagate, Western Digital и Toshiba[65][74][75].
С начала выпуска жёстких дисков в 1956 году их цена снизилась с десятков тысяч долларов до десятков долларов в середине 2010-х годов. Стоимость ёмкости снизилась с 9200 до 0,000035 $ за один мегабайт[79].
В результате наводнения в Таиланде в 2011 году были затоплены заводы по производству жёстких дисков Western Digital, Seagate Technology, Hitachi и Toshiba. По сообщению IDC, это привело к падению выпуска жёстких дисков на треть[80]. По оценкам Piper Jaffray, в IV квартале 2011 года дефицит жёстких дисков на мировом рынке составит 60—80 млн единиц при объёме спроса в 180 миллионов, по состоянию на 9 ноября 2011 года цены на жёсткие диски уже выросли в пределах от 10 до 60 %[81].
В 2020 году в связи с пандемией COVID-19 производители жёстких дисков заметно сократили выпуск накопителей, но, по оценкам экспертов, ненадолго[82][83].
В мае 2021 года в связи с запуском криптовалюты Chia[англ.], основанной на майнинге посредством HDD, произошло кратное подорожание жёстких дисков в России[84][85][86][87][88].
Гигантские корпорации, известные во всем мире, а также госсектор ежегодно уничтожают миллионы жёстких дисков и твердотельных накопителей вместо того, чтобы продать их для повторного использования, поскольку опасаются невозможности безопасного удаления данных[89].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.