Изогональная фигура

политоп, у которого все вершины "одинаковы" Из Википедии, свободной энциклопедии

Изогональный или вершинно транзитивный многогранник — многогранник, все вершины которого эквивалентны. В частности все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями. Термин также может быть применён к многоугольникам или замощениям и так далее.

Формально, мы говорим, что для любых двух вершин существует симметрия политопа, отображающая первую вершину изометрично во вторую. Другой путь сказать то же самое — что группа автоморфизмов политопа транзитивна на его вершинах, или что вершины лежат внутри одной орбиты симметрии.

Все вершины конечной n-мерной изогональной фигуры существуют на (n-1)-сфере.

Термин изогональный давно использовался в контексте многогранников. Термин вершинно транзитивный является синонимом, позаимствованным из современных идей групп симметрии и теории графов.

Четырёхскатный повернутый куполне являющийся изогональным — демонстрирует, что утверждение «все вершины выглядят одинаковыми» не столь ограничительно, как определение, приведённое выше, которое вовлекает группу изометрий, сохраняющую многогранник или мозаику.

Изогональные многоугольники и бесконечноугольники

Подробнее Изогональные бесконечноугольники, Изогональные пространственные бесконечноугольники[англ.] ...
Изогональные бесконечноугольники
Изогональные пространственные бесконечноугольники[англ.]
Закрыть

Все правильные многоугольники, бесконечноугольники и правильные звёздчатые многоугольники являются изогональными. Двойственная фигура для изогонального многоугольника — изотоксальный многоугольник.

Некоторые многоугольники с чётным числом сторон и бесконечноугольники, с попеременными двумя длинами сторон, например прямоугольник, являются изогональными.

Все плоские изогональные 2n-угольники имеют диэдральную симметрию (Dn, n=2,3,...) с осями симметрии через середины сторон.

Подробнее D2, D3 ...
D2 D3 D4 D7

Изогональные прямоугольники и скрещенные прямоугольники[англ.] имеют одно и то же расположение вершин[англ.]

Изогональная гексаграмма с 6 идентичными вершинами и двумя длинами рёбер [1]

Изогональный выпуклый восьмиугольник с синими и красными радиальными осями симметрии

Изогональный «звёздчатый» четырнадцатиугольник с одним типом вершин и двумя типами рёбер [2].
Закрыть

Изогональные 3-мерные многогранники и 2D-мозаики

Суммиров вкратце
Перспектива
Изогональные мозаики
Thumb
Деформированная квадратная мозаика
Thumb
Деформированная
усечённая квадратная мозаика

Изогональный многогранник (3D) и 2D-мозаика имеют единственный вид вершин. Изогональный многогранник с правильными гранями является также однородным многогранником и может быть представлен нотацией вершинной конфигурации, путём последовательного перечисления граней вокруг каждой вершины. Геометрически деформированные варианты однородных многогранников и мозаик могут также быть заданы вершинной конфигурацией.

Подробнее D3d, порядок 12, Th, порядок 24 ...
Изогональные (3D) многогранники
D3d, порядок 12 Th, порядок 24 Oh[англ.], порядок 48
4.4.6 3.4.4.4 4.6.8 3.8.8
Thumb
Деформированная шестиугольная призма
Thumb
Деформированный ромбокубооктаэдр
Thumb
Слегка усечённый кубооктаэдр
Thumb
Сверхусечённый куб
Закрыть

Изогональные 3D-многогранники и 2D-мозаики можно классифицировать далее

Размерность N(> 3) — изогональные многогранники и мозаики

Определения изогональных фигур могут быть распространены на многогранники более высоких размерностей и соты. В общем случае все однородные многогранники являются изогональными, например, однородные 4-мерные многогранники[англ.] и выпуклые однородные соты[англ.].

Двойственный многогранник для изогонального многогранника является изотопическим[англ.], т.е. транзитивен по фасетам.

k-изогональные и k-однородные фигуры

Многогранник или соты называются k-изогональными, если его вершины образуют k классов транзитивности. Более ограничивающий термин, k-однородный определяется как k-изогональная фигура, состоящая только из правильных многоугольников. Они могут быть представлены визуально различными цветами однородной раскраски.

Thumb
Этот усечённый ромбододекаэдр[англ.] является 2-изогональным, поскольку он содержит два класса транзитивности вершин. Этот многогранник состоит из квадратов и сплюснутых шестиугольников.
Thumb
Эта полуправильная мозаика является также 2-изогональной2-однородной). Эта мозаика состоит из правильных треугольных и правильных шестиугольных граней.
Thumb
2-изогональная 9/4 эннеаграмма

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.