Loading AI tools
модель экономического роста Из Википедии, свободной энциклопедии
AK-моде́ль (модель Ребело, англ. AK model) — эндогенная модель экономического ростa, в которой устойчивый экономический рост достигается за счет неубывающей предельной производительности капитала, понимаемого в модели как совокупность физического и человеческого капитала, в производстве инвестиционных товаров. AK-модель преодолела недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям, и показала возможность негативного воздействия фискальной политики на долгосрочные темпы экономического роста. Однако сильная чувствительность темпов экономического роста к изменениям налоговой ставки, предполагаемая по модели, не подтверждается эмпирически. Также в модели не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Разработана в 1990 году Серджио Ребело[англ.].
В ранних неоклассических моделях экономического роста (модели Солоу и Рамсея — Касса — Купманса) темпы научно-технический прогресса, являющего источником экономического роста, задавались экзогенно, а капитал как фактор производства характеризовался убывающей отдачей от масштаба. Чтобы объяснить темпы экономического роста, исследователи стали использовать более широкую трактовку понятия «капитал», включая в него и человеческий капитал. Эта концепция была впервые предложена Фрэнком Найтом в 1944 году[1]. На основании такой широкой трактовки капитала традиционно используемую в макроэкономических моделях функцию Кобба — Дугласа сменила производственная функция вида , которая впервые была предложена в 1937 году Джоном фон Нейманом (на английский язык работа была переведена в 1945 году)[2][3]. Простейший вариант AK-модели (с экзогенной ставкой сбережения) был предложен Робертом Солоу в 1970 году, однако сам Солоу посчитал её неинтересной[4][5]. Для объяснения нормы сбережений как следствия решений экономических агентов, как и в модели Рамсея — Касса — Купманса, используется межвременная функция полезности из работы Фрэнка Рамсея 1928 года[6]. После Роберта Солоу многие исследователи предлагали свои версии АК-модели, иногда под этим названием подразумеваются некоторые схожие модели (см. ниже), но в качестве модели, объединяющей человеческий и физический капитал в производственную функцию вида , с помощью которой объясняются темпы экономического роста, в обзорных источниках используется модель, предложенная Серджио Ребело[англ.][7][8][5] в работе «Анализ зависимости долгосрочной фискальной политики и темпов экономического роста», опубликованной в апреле 1990 года[9] и изданной в июне 1991 года в журнале Journal of Political Economy[англ.][10].
В модели рассматривается закрытая экономика. Фирмы максимизируют свою прибыль, а потребители — полезность. Экономика функционирует в условиях совершенной конкуренции. Производится два разных типа продуктов: один используется, для потребления , другой - для инвестиций . Норма выбытия капитала задается экзогенно. В качестве работника и потребителя в модели выступает бесконечно живущий индивид (или домохозяйство). Предполагается, что между разными поколениями существуют альтруистические связи, при принятии решений домохозяйство учитывает ресурсы и потребности не только настоящих, но и будущих своих членов, что делает его решения аналогичным решениям бесконечно живущего индивида. Время изменяется непрерывно[9].
Предпосылка о закрытой экономике означает, что произведенный продукт тратится на инвестиции и потребление, экспорт/импорт отсутствуют, сбережения равны инвестициям: [9].
Капитал , трактуемый в модели как совокупность физического и человеческого капитала, распределяется между двумя секторами, производящими инвестиционные и потребительские товары[9][11]:
Если обозначить долю капитала, задействованного в производстве потребительских товаров в момент времени как , , то и .
Производственная функция в секторе потребительских товаров описывается функцией Кобба — Дугласа[9][12]:
Производственная функция в секторе инвестиционных товаров не включает в себя труд как фактор производства, зависит только от капитала и описывается функцией[9][11]:
Население , равное в модели совокупным трудовым ресурсам, растет с постоянным темпом : .
Индивид предлагает одну единицу труда (предложение труда неэластично) и получает заработную плату (в единицах потребительского товара). Функция полезности бесконечно живущего индивида-потребителя является сепарабельной, то есть потребление прошлых и будущих периодов не влияют на текущую полезность, влияет только потребление текущего периода. Она удовлетворяет условиям и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю): , а также обладает постоянной эластичностью замещения , и имеет вид[9]:
Доходы индивида состоят из заработной платы и поступлений от активов . Активы индивида могут быть как положительными, так и отрицательными (долг). Процентная ставка по вложениям и по долгу в модели принята одинаковой. В связи с этим в модели присутствует условие отсутствия схемы Понци (финансовой пирамиды): нельзя бесконечно выплачивать старые долги за счет новых[13][14]:
Накопление капитала в момент времени равно разности произведенных инвестиционных товаров и выбытия капитала[9][11]:
Для поиска решения модели используются удельные показатели[9]: выпуск на единицу труда , запас капитала на единицу труда , потребление на единицу труда , инвестиции на единицу труда .
В интенсивной форме производственные функции имеют вид: (сектор инвестиционных товаров) и (сектор потребительских товаров).
Задача фирм, работающие в двух секторах, состоит в максимизации прибыли ( и в потребительском и инвестиционном секторе соответственно)[9][15]:
В условиях совершенной конкуренции это означает, что предельная производительность капитала в производстве инвестиционных и потребительских товаров должна быть одинакова (), при условии статичности цен[9][15]:
Доходы индивида расходуются либо на потребление, либо на увеличение активов (сбережений). Население растет темпом , поэтому активы на одного человека сокращаются с этим же темпом, то есть скорость изменения активов в каждый момент времени уменьшаются на . Таким образом, учитывая, что в этой версии модели производная активов по времени , выступающая в качестве бюджетного ограничения индивида, имеет вид[13]:
Как и в модели Рамсея — Касса — Купманса, задача потребителя заключается в максимизации полезности при бюджетном ограничении и при ограничении на отсутствие схемы Понци. Поскольку бюджетное ограничение представлено как производная по времени, то задача потребителя представлена в виде задачи динамической оптимизации. Её решение можно найти путём построения функция Гамильтона и нахождения её максимума с помощью принципа максимума Понтрягина[16].
Функция Гамильтона выглядит следующим образом:
Условие максимума первого порядка: .
Фазовая координата (сопряжённое уравнение): , где — производная по времени.
Условие трансверсальности (при невыполнении которого найденное решение может оказаться не максимумом, а седловой точкой): , где представляют собой теневые цены[англ.] активов[17] (теневые цены учитывают внешние эффекты в стоимости товаров, если фирмы и потребители принимают решения в соответствии со структурой цен, пропорциональной теневой, то в экономике достигается оптимальное по Парето состояние). В данном случае условие трансверсальности совпадает с ограничением на отсутствие схемы Понци[18][19].
Искомое решение имеет вид правила Кейнса — Рамсея[13][9]:
С учетом изменения цен потребительского и инвестиционного товаров, в равновесном состоянии доходности на капитал в производстве инвестиционных () и потребительских () товаров должны удовлетворять условию[15][9]:
На траектории стабильного роста . Если выбрать потребительский товар в качестве меры стоимости, , то . Динамика цены инвестиционного товара определяется из равенства доходностей на капитал в секторах потребительских и инвестиционных товаров[20]:
С учетом уравнения доходности капитала в производственном секторе, итоговое уравнение для примет вид[20]:
Если подставить значение в уравнение динамики потребления, то оно примет вид[20]:
Производная производственной функции в секторе потребительских товаров по времени выглядит следующим образом[20]:
Решением системы из этих двух уравнений и будут равновесные темпы роста капиталовооружённости (), выпуска на единицу труда (), заработной платы () и потребления на единицу труда ()[21][9]:
Таким образом, в модели темпы роста выпуска и потребления являются постоянными, и не падают с ростом запаса капитала. Поскольку в модели отсутствуют внешние эффекты, найденное конкурентное равновесие является оптимальным по Парето, и не существует централизованного равновесия с более высокими темпами роста, в отличие от моделей обучения в процессе деятельности и Удзавы — Лукаса[22].
Совокупные налоговые поступления можно записать следующим образом[9]:
Налоги на потребление не влияют на темпы роста капиталовооружённости и выпуска , они лишь приводят к уменьшению текущего уровня потребления. Но налоги на инвестиции оказывают влияние на темпы роста В этом случае оптимальные темпы роста капиталовооружённости и выпуска изменится следующим образом[9]:
Таким образом, в отличие от модели Рамсея — Касса — Купманса, в которой рост налогов вызывал только снижение текущего потребления, но не влиял на темпы экономического роста, в рассматриваемой модели даже небольшие изменения в налоговой политике могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста (при определенных значениях параметров, они даже могут стать отрицательными)[23].
Во многих работах встречается упрощенная версия модели, в которой рассматривается односекторная экономика вместо двухсекторной в оригинальной модели: производится только один товар , используемый как для потребления, так и для инвестиций[7][8][24]. В этом случае в качестве совокупной производственной функции выступает производственная функция сектора инвестиционных товаров из оригинальной модели[25][26]:
Поскольку производится только один товар, то больше нет необходимости в разных ценах и , и в этой версии, как и в модели модели Рамсея — Касса — Купманса, работники снова получают заработную плату в натуральной величине[25][26].
Задача фирмы состоит в максимизации прибыли [27]:
Поскольку фирмы функционируют в условиях совершенной конкуренции, то предельные производительности факторов производства равны их ценам[27][14]:
Задача потребителя полностью аналогична задаче в оригинальной модели. Её решение имеет также вид правила Кейнса — Рамсея[14][13]:
В равновесном состоянии темпы роста потребления , капитала и выпуска равны[16][28]:
Учитывая, что , после решения задач фирмы и потребителя, можно записать следующую систему дифференциальных уравнений[16][14]:
Из решения этой системы уравнений находится равновесная норма сбережения [29][30]:
В итоге, и в упрощенной модели темпы роста выпуска и потребления также являются постоянными, и не падают с ростом запаса капитала. Поскольку в модели отсутствуют внешние эффекты, найденное конкурентное равновесие также является оптимальным по Парето, и не существует централизованного равновесия с более высокими темпами роста[22].
Поскольку в упрощенной версии модели индивиды получают доход только от владения капиталом (), то и налоги могут быть в ней введены только на этот источник дохода. С учетом налогов, динамика активов потребителя примет вид[22]:
В этом случае равновесные темпы роста потребления , капитала и выпуска в зависимости от ставки налога будут равны[22][31]:
Норма сбережений также меняется в зависимости от[22][31]:
Как и в оригинальной модели, в упрощенной версии небольшие изменения в налоговой политике тоже могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста (при определенных значениях параметров, они даже могут стать отрицательными). В целом, при более простых вычисления, упрощенная версия модели приходит к тем же общим выводам, что и оригинальная модель, за исключением вывода относительно уровня заработной платы и темпов его роста . Но это важное различие, оно предполагает, что доля капитала в национальном доходе должна асимптотически стремиться к 100%[23].
В модели Серджио Ребело[англ.] человеческий и физический капитал объединены в одну переменную. Существуют также ряд других моделей, которые приходят к аналогичным выводам, но исходя из иных предпосылок. Вместе с рассматриваемой моделью из называют моделями экономического роста с расширенной трактовкой капитала или моделями эндогенного роста первого поколения[32].
В модели обучения в процессе деятельности производственная функция каждой отдельной фирмы удовлетворяет неоклассическим предпосылкам, однако общий запас капитала посредством эффекта перелива знаний повышает производительность труда в экономике. Модель также демонстрирует возможность устойчивого экономического роста без экзогенно задаваемых темпов научно-технического прогресса, но, поскольку устойчивый экономический рост в модели достигается за счет внешних эффектов от совокупного запаса капитала, который каждая отдельная фирма считает постоянной величиной, то достигаемое равновесие не является оптимальным по Парето. Потому в централизованном равновесии в модели темпы роста выпуска и потребления оказываются выше, чем в децентрализованном. Разработана Полом Ромером в 1986 году[33].
В модели Удзавы — Лукаса производственная функция каждой отдельной фирмы также удовлетворяет неоклассическим предпосылкам, однако общий запас человеческого капитала (в форме среднего уровня образования) повышает производительность труда в экономике. Модель демонстрирует возможность устойчивого экономического роста без экзогенно задаваемых темпов научно-технического прогресса, но, поскольку устойчивый экономический рост в модели достигается за счет внешних эффектов от среднего уровня образования, который каждая отдельная фирма считает постоянной величиной, то достигаемое равновесие не является оптимальным по Парето. Потому в централизованном равновесии в модели темпы роста выпуска и потребления оказываются выше, чем в децентрализованном. Разработана Робертом Лукасом на основе идей Хирофуми Удзавы в 1988 году[34].
Модель Мэнкью — Ромера — Вейла является расширенной за счёт включения человеческого капитала версией модели Солоу, она разработана Грегори Мэнкью, Дэвидом Ромером и Дэвидом Вейлом[фр.] в 1990 году[35]. В том случае, если в модели Мэнкью — Ромера — Вейла вместо экзогенной ставки сбережений вводится функция полезности потребителя, и если выполняется условие , то она превращается в полный аналог упрощенный версии AK-модели[36].
AK-модель преодолевает недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям (модель Рамсея — Касса — Купманса, модель пересекающихся поколений) благодаря тому, что понятие «капитал» в модели трактуется как совокупность физического и человеческого капитала, что позволяет обосновать неубывающую предельную производительность капитала в секторе инвестиционных товаров, обеспечивающую постоянные темпы экономического роста[37].
Темпы экономического роста в модели зависят от поведения потребителей, которые выбирают субъективную ставку дисконтирования и институциональных параметров, определяющих налоговую нагрузку. В модели показано негативное влияние повышения налогов на темпы экономического роста. Даже небольшие изменения в фискальной политике могут привести к снижению не только текущего уровня потребления, но и темпов экономического роста, которые при определенных значениях параметров даже могут стать отрицательными[38]. Однако столь сильная чувствительность к изменениям налоговой ставки рядом экономистов считается недостатком модели: в развитых странах существенно различается налоговая нагрузка, но это не приводит к сопоставимым различиям в темпах роста ВВП[23].
AK-модели также иногда приписывается вывод о том, что доля капитала в национальном доходе должна асимптотически стремиться к 100%. Но это верно только для упрощённой версии модели, в оригинальной версии этот недостаток преодолевается[23].
Модель не предполагает ни абсолютной, ни условной конвергенции, так как темпы роста не падают с ростом объёма выпуска, а значит, в рамках её предпосылок бедные страны не могут догнать богатые[39]. Это более реалистичный вывод, чем у моделей Солоу и Рамсея — Касса — Купманса, предполагавших, что при одинаковых структурных параметрах бедные страны должны догонять богатые. В большинстве случаев бедные страны действительно не могут догнать богатые[40], хотя единичные примеры таких стран известны (японское экономическое чудо, корейское экономическое чудо). Более того, в AK-модели существующие между странами разрывы со временем только нарастают, а значит, бедные страны не только не могут догнать богатые, но и все больше отстают от них. Такой вывод представляется чрезмерно пессимистичным по отношению к развивающимся странам и эмпирически не подтверждается[41].
Некоторые исследователи в качестве достоинства модели также отмечают её простоту и отсутствие переходной динамики[42]. Но следствием её простоты является то, что в понятие «капитал» включается много различных типов деятельности: физический капитал, человеческий капитал, обучение, создание новых продуктов. Из-за того, что столь различные понятия объединены в одну переменную , модель носит достаточно ограниченный характер[43].
Вместе с тем, отмечается, что в модели отсутствует технологический прогресс в явном виде и не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли[42]. Альтернативный путь развития — импорт и внедрение новых технологий из более развитых стран — также не отражён в модели[42].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.