раздел геометрии Из Википедии, свободной энциклопедии
Запрос «Дискретная геометрия»перенаправляется сюда; см. также другие значения.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов (точек, прямых, окружностей, многоугольников, тел с одинаковым диаметром, целочисленных решёток и т. п.) и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов (хотя и не всегда с простыми ответами) — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Теорема Эрдёша — Секереша о выпуклых многоугольниках утверждает, что в любом достаточно большом множестве точек в общем положении на плоскости можно найти точек, являющихся вершинами выпуклого многоугольника. Гипотеза Эрдёша — Секереша о минимальном числе точек, обязательно содержащих выпуклый -угольник, на сегодня не доказана. Данная задача является также задачей теории Рамсея.
Теорема Минковского о выпуклом теле. Пусть — замкнутое выпуклое тело, симметричное относительно начала координат -мерного евклидова пространства, имеющее объём . Тогда в найдётся целочисленная точка, отличная от . Эта теорема положила начало геометрии чисел.
Гипотеза Борсука утверждает, что любое тело диаметра в -мерном евклидовом пространстве можно разбить на часть так, что диаметр каждой части будет меньше . Эта гипотеза была доказана для размерностей и , но опровергнута для пространств большой размерности. По известной сегодня оценке она неверна для пространств размерности 64 и более[2].
Задача Данцера — Грюнбаума заключается в поиске конечного множества из как можно большего количества точек в многомерном пространстве, между которыми можно построить только острые углы.
Goodman, Jacob E. and O'Rourke, Joseph.Handbook of Discrete and Computational Geometry, Second Edition(англ.).— Boca Raton: Chapman & Hall/CRC, 2004.— ISBN 1-58488-301-4.