Loading AI tools
álgebras que representam operações lógicas e de conjuntos, em homenagem a Boole Da Wikipédia, a enciclopédia livre
Em álgebra abstrata, álgebras boolianas[nota 1] (ou álgebras de Boole) são estruturas algébricas que "captam as propriedades essenciais" dos operadores lógicos e de conjuntos, ou ainda oferecem uma estrutura para se lidar com "afirmações",[1] são assim denominadas em homenagem ao matemático George Boole.[2]
O termo "álgebra booliana" é uma homenagem a George Boole, um matemático inglês autodidata. Boole introduziu o sistema algébrico, inicialmente, em um pequeno panfleto, o The Mathematical Analysis of Logic, publicado em 1847, em resposta a uma controvérsia em curso entre Augustus De Morgan e William Hamilton, e mais tarde como um livro mais substancial, The Laws of Thought, publicado em 1854. A formulação de Boole difere das descritas acima em alguns aspectos importantes. Por exemplo, a conjunção e a disjunção em Boole não era um duplo par de operações. A álgebra booliana surgiu na década de 1860, em artigos escritos por William Jevons e Charles Sanders Peirce.[3] A primeira apresentação sistemática de álgebra booliana e reticulados distributivos é devido ao 1890 Vorlesungen de Ernst Schröder . O primeiro tratamento extensivo de álgebra booliana em inglês foi em 1898 na Universal Algebra de Whitehead.[4][5]
Uma álgebra booliana é uma 6-upla consistindo de um conjunto munido de duas operações binárias (também denotado por , é geralmente chamado de "ou") e (também denotado por ou por , é geralmente chamado de "e"), uma operação unária (também denotada por ou por uma barra superior, é geralmente chamado de "não"), e duas constantes (também denotada por ou por , geralmente chamado de "zero" ou de "falso") e (também denotada por ou por , geralmente chamado de "um" ou de "verdadeiro"), e satisfazendo os seguintes axiomas, para quaisquer :
Propriedades Associativas | ||
Propriedades Comutativas | ||
Propriedades Absortivas | ||
Propriedades Distributivas | ||
Elementos Neutros | ||
Elementos Complementares |
Alguns autores também incluem a propriedade , para evitar a álgebra booliana com somente um elemento.
|
|
|
|
|
|
Dado uma álgebra booliana sobre , são válidos para quaisquer :
Dupla Negação
Leis de De Morgan
Leis de Absorção
Elementos Absorventes
Negações do Zero e do Um
Definições alternativas da operação binária (também denotado por , é geralmente chamado de "xor" ou de "ou exclusivo")
Dado uma álgebra booliana sobre , é válido para quaisquer :
A relação definida como se e somente se uma das duas condições equivalentes acima é satisfeita é uma relação de ordem em . O supremo e o ínfimo do conjunto são e , respectivamente.
Um homomorfismo entre duas álgebras boolianas e é uma função que para quaisquer :
Uma consequência é que .
Um isomorfismo entre duas álgebras boolianas e é um homomorfismo bijetor entre e . O inverso de um isomorfismo é um isomorfismo. Se existe um isomorfismo entre e , dizemos que e são isomorfos.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.