Remove ads
Da Wikipédia, a enciclopédia livre
Um sistema formal ou sistema lógico é, por assim dizer, qualquer sistema de pensamento abstrato bem definido, em um modelo matemático. Tecnicamente, Os Elementos de Euclides, com um modelo consistindo de 23 definições e 10 postulados/axiomas publicados em 13 livros de teoremas com provas, é frequentemente considerado o primeiro sistema formal e mostra as características de um sistema formal. A implicação de um sistema por sua base lógica é o que distingue o sistema formal de outros que podem ter alguma base em um modelo abstrato. Muitas vezes, o sistema formal será a base, ou será identificado por si só, como uma teoria maior ou um campo consistente com o uso da matemática moderna, como a teoria dos modelos.
Cada sistema formal tem uma linguagem formal, que é composta por símbolos primitivos. Esse símbolos agem em um certa regra de formação e são desenvolvidos por inferência a partir de um conjunto de axiomas. O sistema, por tanto, consiste em um número de fórmulas construídas através de finitas combinações dos símbolos primitivos - combinações, estas, formadas a partir de axiomas em concordância com as regras estabelecidas.[1]
Sistemas formais, em matemática, consiste nos seguintes elementos:
O sistema formal é dito como sendo recursivo se os conjunto de axiomas e o conjunto de regras de inferência são conjunto decidíveis ou conjunto semidecidíveis, dependendo do contexto.
Alguns teóricos usam o de maneira grosseira o termo formalismo como sinônimo para sistema formal, mas esse termo é também usado para se referir a um estilo particular de notação, por exemplo, a Notação Bra-ket de Paul Dirac.
O sistema lógico ou, simplesmente, lógica é o sistema formal junto com a semântica, geralmente na forma de interpretação de um modelo teórico, que atribui valor veridativo às sentenças da linguagem formal, isso é, formulas que não contêm variáveis livres. A lógica é correta se todas as sentenças que possam ser derivadas de sua interpretação são verdadeiras, e completas se, reciprocamente, todas as sentenças verdadeiras possam ser derivadas.
Provas formais são as sequencias de fbf's. Para uma fbf ser qualificada com parte da prova, ela pode ser tanto um axioma quanto o produto das regras de inferência aplicadas em fbfs anteriores na sequencia de provas. A última fbf na sequência de provas é reconhecida como um teorema.
O ponto de vista de que a geração de provas formais é tudo que existe para a matemática é, frequentemente, chamado de formalismo. David Hilbert fundou a metamatemática como uma disciplina para a discussão de sistemas formais. Qualquer linguagem que seja usada para falar sobre o sistema formal é chamada de metalinguagem'. A metalinguagem pode não ser nada mais que uma linguagem natural comum, ou pode ser parcialmente formalizada, porém, é geralmente menos do que o componente da linguagem formal do sistema formal ao qual está sendo examinado, que é então chamado de Linguagem objeto, isto é, objeto que está em questão na discussão.
Uma vez dado um sistema formal, pode se definir o conjunto de teoremas que podem ser provados dentro do sistema formal. Esse conjunto consiste de todas as fbfs para as quais existe uma prova. Assim, todos os axiomas são considerados teoremas. Ao contrário da gramática para fbfs, não existe garantia que existirá um procedimento para decidir quando uma fbf dada é um teorema ou não. Essa noção de teorema não deve ser confundida com teoremas sobre o sistema formal, que, para evitar confusão, são normalmente chamados de metateoremas.
Na matemática, na lógica, e na ciência da computação, a linguagem formal é a linguagem que é definida por modelos matemáticos ou máquinas de processamento de fórmulas. Como línguas em linguística, a linguagem formal possui dois aspectos:
Existe um ramo especial da matemática e da ciência da computação que é dedicado exclusivamente à teoria da sintaxe da linguagem:[[linguagem formal| Teoria da Linguagem Formal. Na teoria da linguagem formal, a língua é nada mais que sua própria sintaxe; questões de semântica não são incluídas nessa especialidade.
Em ciência da computação e em linguística gramática formal é uma descrição precisa de uma linguagem formal: um conjunto de cadeias. As duas principais categorias da gramática formal são: a gramática gerativa, que é conjunto de regras de como cadeias podem ser geradas em uma linguagem, e a gramática analítica, que é conjunto de regras de como cadeias podem ser analisadas para determinar se pertencem à linguagem. Em resumo, a gramática analítica descreve como reconhecer quando cadeias são membros de um conjunto, ao passo que a gramática gerativa descreve somente como escrever essas cadeiras no conjunto.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.