Remove ads
função analítica sobre o semiplano superior que satisfaz um certo tipo de equação funcional com relação à ação do grupo modula, e que também satisfaz uma condição de crescimento Da Wikipédia, a enciclopédia livre
Em matemática, uma forma modular é uma função analítica (complexa)[nota 1] sobre o semiplano superior satisfazendo um certo tipo de equação funcional e condição de crescimento. A teoria das formas modulares entretanto pertence à análise complexa mas a principal importância da teoria tem tradicionalmente sido suas conexões com a teoria dos números. Formas modulares surgem em outras áreas, tais como topologia algébrica e teoria das cordas.
Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (Junho de 2021) |
Uma função modular é uma forma modular de peso 0: é invariante ante o grupo modular, em vez de transformar-se na forma prescrita, e portanto é uma função modular na região modular.
A teoria da forma modular é um caso especial da teoria mais geral das formas automórficas e portanto pode ser considerada como a parte mais concreta da ampliada teoria de grupos discretos.
Uma forma modular pode ser entendida como uma função F do conjunto de períodos Λ em C do conjunto de números complexos o qual satisfaz certas condições:
Quando k = 0, a condição 2 implica que F depende somente da similaridade da classe do retículo. Isto é um caso especial muito importante, mas somente as formas modulares de peso 0 são as constantes. Se nós eliminarmos a condição 3 e permitir que a função tenha pólos, então os exemplos com peso 0 existem: elas são chamadas funções modulares.
A situação pode ser produtiva comparada aquela que surge na busca por funções sobre o espaço projetivo P(V): nesse cenário, seria ideal como funções F sobre o espaço vetorial V as quais são polinomiais nas coordenadas de v≠ 0 em V e satisfaz a equação F(cv) = F(v) para todo c não nulo. Infelizmente, tais funções são as únicas constantes. Se permitirmos que denominadores (funções racionais em vez de polinômios), nós podemos fazer F ser a razão de dois polinômios homogêneos do mesmo grau. Alternativamente, nós podemos tratar a questão com polinômios e tornar mais livre a dependência sobre c, deixando F(cv) = ckF(v). As soluções são então os polinômios homogêneos de grau k. Por um lado, estes formam um espaço vetorial finito para cada k, e noutra, se nós fizermos k variar, nós podemos encontar os numeradores e denominadores para a construção de todas as funções racionais as quais são realmente funções sobre o espaço projetivo P(V) subjacente.
Poderia ser perguntado, já que polinômios homogêneos não são realmente funções sobre P(V), o que eles seriam, geometricamente falando. A resposta dentro da geometria algébrica é que eles são seções de um feixe (poderia ser também dito um fibrado de linhas neste caso). A situação com formas modulares é precisamente análoga.
Cada retículo Λ em C determina uma curva elíptica C/Λ sobre C; dois retículos determinam curvas elípticas isomórficas se e somente se uma é obtida da outra por multiplicação por algum α. Funções modulares podem ser entendidas como funções sobre o espaço de módulos de classes de isomorfismo de curvas elípticas complexas. Por exemplo, o j-invariante de uma curva elíptica, considerado como uma função sobre o conjunt de todas as curvas elípticas, é modular. Formas modulares podem também ser aproximadas de maneira prática de sua direção geométrica, como seções de fibrados de linhas sobre o espaço de módulos de curvas elípticas.
Converter uma forma modular F em uma função de uma única variável complexa é fácil. Faz-se z = x + iy, onde y > 0, e faz-se f(z) = F(<1, z>). (Não pode-se considerar y = 0 porque então 1 e z não irão gerar um retículo, por isso restringe-se para o caso que y é positivo.) A condição 2 sobre F agora torna-se a equação funcional
para a, b, c, d inteiros com ad − bc = 1 (o grupo modular). Por exemplo,
Funções as quais satisfazem a equação funcional modular para todos as matrizes em um índice de um subgrupo finito de SL2(Z) são também consideradas como modulares, normalmente com um qualificador indicando o grupo. Então formas modulares de nível N (ver abaixo) satisfazem a equação funcional para matrizes congruentes para a matrix identidade de módulo N (frequentemente fato para um grupo maior dado por condições (mod N) sobre os elementos da matriz.)
Em matemática, funções modulares são certos tipos de funções matemáticas mapeando números complexos a números complexos. Existem um número de outros usos do termo "função modular" também; ver abaixo para detalhes.
Formalmente, uma função f é chamada modular ou uma função modular se e somente se ela satisfaz as seguintes propriedades:
É limitada em baixo; é um polinômio de Laurent em , então é meromórfica na cúspide (singularidade). Pode-se mostrar que cada função modular pode ser expressa como uma função racional of invariante absoluto de Klein j(τ), e que cada função racional de j(τ) é uma função modular; além disso, todas as funções modulares analíticas são formas modulares, embora o inverso não seja mantida. Se uma função modular f não é identicamente 0, então nós podemos mostrar que o número de zeros de f é igual ao número de polos de f no fechamento do domínio fundamental RΓ.
Existe um número de outros usos do termo função modular, além deste clássico; por exemplo, na teoria de medidas de Haar, é uma função Δ(g) determinada pela ação conjugação.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.