Loading AI tools
Da Wikipédia, a enciclopédia livre
Um isomorfismo (ou iso), no contexto de teoria das categorias, é uma seta invertível. Mais precisamente, uma seta numa categoria é um isomorfismo se e somente se existe tal que e . Nesse caso, , a inversa de , é única, e denotada por .
Toda seta iso é mono e epi, embora o contrário não seja necessariamente verdade. Por exemplo, na categoria formada por dois objetos e , os morfismos identidade, e um único morfismo , é um monomorfismo e um epimorfismo, porém não é um isomorfismo.
Em conjuntos podemos pensar uma seta iso como sendo uma função bijetora.
Isomorfismo é uma das noções mais importantes em uma categoria. Por isso, é comum encontrar em várias demonstrações e construções as expressões único, a menos de isomorfismo e único, a menos de único isomorfismo.
O que estas expressões querem dizer é que determinado objeto pode existir como várias versões, mas todas estas versões são isomórficas. Na noção mais forte, este isomorfismo entre dois objetos também é único.
Para efeitos práticos, o isomorfismo faz com que objetos isomórficos comportem-se da mesma forma. Tudo que pode ser feito com um deles pode ser feito com o outro - basta compor setas com o isomorfismo entre estes objetos.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.