Najlepsze pytania
Chronologia
Czat
Perspektywa
Postać kanoniczna
wspólna nazwa różnych pojęć matematycznych, m.in. z algebry Z Wikipedii, wolnej encyklopedii
Remove ads
Remove ads
Postać kanoniczna (normalna, standardowa) obiektu matematycznego – w matematyce i informatyce standardowy sposób przedstawiania obiektu jako wyrażenia algebraicznego. W niektórych dziedzinach matematyki mogą zachodzić różnice między pojęciem „kanoniczna” oraz „normalna”. W większości dziedzin postać kanoniczna oznacza unikatową reprezentację każdego obiektu, zaś postać normalna jedynie precyzuje jego formę, bez konieczności bycia postacią unikatową.
Postać kanoniczna liczby naturalnej w zapisie dziesiętnym to skończony ciąg cyfr, który nie zaczyna się od zera.
Bardziej ogólnie, dla klasy obiektów, na której została określona relacja równoważności, postać kanoniczna polega na wyborze konkretnego obiektu w każdej z klas. Na przykład postać Jordana jest postacią kanoniczną podobieństwa macierzy, a macierz schodkowa postacią kanoniczną, gdy uznamy za równoważne macierz oraz wynik iloczynu tej macierzy i pewnej macierzy odwracalnej.
W informatyce, a konkretnie w algebrze komputerowej, istnieje zazwyczaj wiele różnych sposobów na przedstawienie tego samego obiektu. W tym wypadku postać kanoniczna oznacza takie przedstawienie, w którym każdy obiekt ma swoją unikatową reprezentację. W ten sposób można łatwo sprawdzić równość dwóch obiektów poprzez sprawdzenie równości ich postaci kanonicznych. Jednak wybór postaci kanonicznej bardzo często zależy od kwestii czysto arbitralnych (jak kolejność zmiennych), a to może powodować trudności w porównywaniu dwóch obiektów będących wynikami niezależnych obliczeń. Dlatego w algebrze komputerowej postać normalna to słabsze określenie – przedstawienie takie, że zero ma swoją unikatową reprezentację. To pozwala na porównywanie poprzez przedstawienie różnicy między obiektami w postaci normalnej.
Postać (forma) kanoniczna może oznaczać też formę różniczkową, która została przedstawiona naturalnie (kanonicznie).
Proces zamiany obiektu na postać kanoniczną nazywany jest normalizacją[a]
Remove ads
Definicja
Załóżmy, że mamy zbiór obiektów z relacją równoważności. Postać kanoniczna jest dana poprzez wyznaczenie niektórych obiektów w do bycia „w postaci kanonicznej” takiej, że każdy obiekt w zbiorze jest równoważny jednemu i tylko jednemu obiektowi w postaci kanonicznej. Innymi słowy, postaci kanoniczne w reprezentują klasy abstrakcji, każda dokładnie jednokrotnie. By sprawdzić, czy dwa obiekty są równe, wystarczy sprawdzić równość ich postaci kanonicznych. W ten sposób postać kanoniczna nie tylko klasyfikuje każdą klasę abstrakcji, ale daje też wyróżnionego (kanonicznego) reprezentanta.
W praktyce warto umieć rozpoznawać postaci kanoniczne. Jest też do rozważenia problem algorytmiczny – jak przejść od danego obiektu należącego do do postaci kanonicznej ? Postaci kanoniczne są zazwyczaj używane, by uczynić operacje na klasach abstrakcji bardziej efektywne. Na przykład w arytmetyce modularnej postacią kanoniczna klasy reszty jest zazwyczaj jej najmniejsza nieujemna liczba całkowita. Operacje na klasach są wykonywane poprzez połączenie tych reprezentantów, a następnie zredukowanie wyniku do jego najmniejszej nieujemnej reszty.
Postać kanoniczna może czasem być po prostu pewną konwencją lub też być określona twierdzeniem. Na przykład wielomiany są najczęściej zapisywane w kolejności malejących potęg. Częstszy jest zapis niż pomimo że obie postaci definiują ten sam wielomian. Zupełnie innym przypadkiem jest postać Jordana będąca określona głębokim twierdzeniem.
Remove ads
Przykłady
Podsumowanie
Perspektywa
Uwaga: „z dokładnością do” jakiejś relacji identyczności E oznacza, że postać kanoniczna nie jest unikatowa w ujęciu ogólnym, ale jeśli jeden obiekt ma dwie postaci kanoniczne, są one E-identyczne.
Algebra liniowa
Logika klasyczna
Analiza funkcjonalna
Teoria liczb
- Postać kanoniczna liczb naturalnych
- Postać kanoniczna ułamka łańcuchowego
Algebra
Geometria
- Równanie prostej: gdzie oraz
- Równanie okręgu:
Istnieją alternatywne formy zapisywania równań. Na przykład równanie prostej można zapisać jako równanie liniowe, mając dany punkt należący do prostej oraz jej nachylenie lub jej współczynnik nachylenia i wyraz wolny.
Notacja matematyczna
Postać standardowa jest używana przez wielu matematyków i naukowców w celu zapisywania bardzo dużych liczb w bardziej zwięzły i zrozumiały sposób.
Teoria zbiorów
Teoria gier
Systemy przepisywania
- W abstrakcyjnych systemach przepisywania, postać kanoniczna jest nieredukowalnym obiektem.
Rachunek lambda
- Postać normalna Beta, jeśli niemożliwa jest redukcja beta; Rachunek lambda jest szczególnym przypadkiem abstrakcyjnego systemu przepisywania.
Formy różniczkowe
Do kanonicznych form różniczkowych zaliczamy formę Liouville’a, ważną w badaniu mechaniki Hamiltona i rozmaitości symplektycznych.
Informatyka
W informatyce, przekształcanie danych do postaci kanonicznej jest potocznie nazywane normalizacją danych.
Na przykład normalizacja bazy danych jest procesem organizowania pól i tabel relacyjnej bazy danych, aby zminimalizować redundancję danych. W dziedzinie bezpieczeństwa oprogramowania oprogramowanie często podatne jest na niewłaściwe dane wejściowe. Odpowiedzią na ten problem jest poprawna ratyfikacja danych wejściowych. Zanim można ją przeprowadzić, dane wejściowe muszą zostać znormalizowane – odszyfrowane i zredukowane do ciągu znaków.
Inne typy danych, często kojarzone z przetwarzaniem sygnałów (w tym audio lub obrazów) lub uczeniem maszynowym, mogą być znormalizowane w celu podania skończonego zakresu wartości.
Remove ads
Zobacz też
Uwagi
- Czasem używa się też pojęcia „kanonizacja”.
Bibliografia
- Georgi E. Shilov: Linear Algebra. Dover, 1977. ISBN 0-486-63518-X.
- Vagn Lundsgaard Hansen: Functional Analysis: Entering Hilbert Space. World Scientific Publishing, 2006. ISBN 981-256-563-9.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads