Funkcja kardynalna – funkcja, której wartościami są liczby kardynalne. Zwykle tej nazwy używa się gdy, dodatkowo, wartości funkcji są nieskończonymi liczbami kardynalnymi. Często funkcje te są klasami.
Funkcje kardynalne są jednym z najbardziej widocznych połączeń teorii mnogości z innymi dziedzinami matematyki. Dostarczają one wygodnego języka do opisu różnych własności obiektów matematycznych i są również interesującym obiektem badań samym w sobie.
- Najczęściej spotykaną funkcją kardynalną jest funkcja moc zbioru, która dla zbioru przyporządkowuje jego moc
- Czasami dla ideałów podzbiorów jakiegoś zbioru bada się następujące funkcje kardynalne, nazywane też współczynnikami kardynalnymi ideału. Niech będzie takim ideałem podzbiorów zbioru który zawiera wszystkie zbiory jednopunktowe. Określamy:
- Dla praporządku określa się liczbę nieograniczoną oraz liczbę dominującą tego praporządku przez
- Dla przestrzeni Banacha rozważa się zbiory Enflo-Rosenthala (tzw. ER-zbiory) będące uogólnieniami bazy Schaudera. (Zbiór jest zbiorem Enflo-Rosenthala jeśli każdy jego przeliczalny podzbiór może być uporządkowany tak, że stanowi ciąg bazowy oraz każdy element jest granicą ciągu skończonych kombinacji elementów ). Minimalne moce ER-zbiorów są (oczywiście) funkcjami kardynalnymi na przestrzeniach Banacha dopuszczających istnienie takich zbiorów[5].
Juhász, István: Cardinal functions in topology. „Mathematical Centre Tracts”, nr 34. Mathematisch Centrum, Amsterdam, 1971.
Juhász, István: Cardinal functions in topology – ten years later. „Mathematical Centre Tracts”, 123. Mathematisch Centrum, Amsterdam, 1980. ISBN 90-6196-196-3.
Monk, J. Donald: Cardinal functions on Boolean algebras. „Lectures in Mathematics ETH Zürich”. Birkhäuser Verlag, Basel, 1990. ISBN 3-7643-2495-3.
Monk, J. Donald: Cardinal invariants on Boolean algebras. „Progress in Mathematics”, 142. Birkhäuser Verlag, Basel, ISBN 3-7643-5402-X.
Singer, Ivan: Bases in Banach spaces. II. Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981, s. 571–603, ISBN 3-540-10394-5.