Van Wikipedia, de vrije encyclopedie
Twee rechte lijnen, twee vlakken of een lijn en een vlak worden evenwijdig of parallel genoemd als hun onderlinge afstand overal hetzelfde is, dus als zij overal even ver, 'even wijd' van elkaar liggen verwijderd. Om aan te geven dat twee lijnen, een lijn en een vlak of twee vlakken evenwijdig zijn, wordt het teken gebruikt. Als de twee lijnen en evenwijdig zijn, wordt dat genoteerd als .
Het Nederlands heeft als een van de weinige West-Europese talen een eigen woord voor evenwijdig, bedacht door Simon Stevin (1548-1620). Andere West-Europese talen hebben meestal een woord dat van het Oudgriekse παράλληλος, par-allè-los, parallel, komt, dat 'naast elkaar' betekent.[1]
Evenwijdige rechte lijnen zijn alleen in een euclidische meetkunde mogelijk, die een vectorruimte beschrijft die niet is gekromd. Voor de ligging van twee lijnen in een plat vlak zijn er drie mogelijkheden. Ze hebben:
In de euclidische meetkunde luidt het axioma van Playfair,[2] dat equivalent is met het parallellenpostulaat, het vijfde postulaat van Eucides:
Als is gegeven dat twee lijnen evenwijdig zijn en er is een derde lijn die beide lijnen snijdt, zijn er enkele hoeken gelijk, namelijk de F- en Z-hoeken.
Als in de driedimensionale euclidische ruimte twee lijnen evenwijdig zijn, is er een vlak waarin beide lijnen liggen. Lijnen die niet in hetzelfde vlak liggen, kruisen elkaar.
De definities worden in de euclidische ruimte op dezelfde manier gegeven als in het euclidische vlak:
Als de vlakken en niet evenwijdig zijn, snijden ze elkaar en hebben ze een lijn gemeenschappelijk, hun snijlijn. Als er behalve de gevonden snijlijn nog een gemeenschappelijk punt is, dan volgt uit enkele axioma's uit de stereometrie dat de vlakken en samenvallen.
In figuur 3 zijn de lijnen en evenwijdig. is een punt van en is een willekeurig ander punt van . De lijnstukken en staan loodrecht op . Dus staan beide lijnstukken ook loodrecht op (F- en Z-hoeken). De vierhoek is dus een rechthoek, zodat .
In figuur 4 is een vlak door dat snijdt. De snijlijn van en is . Omdat is, heeft geen punt gemeen met . heeft dus ook geen punt gemeen met , maar ligt wel met in hetzelfde vlak . Dus .
Zoals uit de bovengenoemde eigenschap blijkt, hebben evenwijdige lijnen een onderlinge afstand. Als de evenwijdige lijnen en in een standaard -assenstelsel gegeven zijn door de vergelijkingen:
kan de onderlinge afstand , de lengte van een loodrecht verbindingslijnstuk, berekend worden. De coördinaten van de eindpunten en van zo'n lijnstuk waarvan het verlengde door de oorsprong gaat, zijn de oplossingen van de stelsels vergelijkingen:
De tweede vergelijking van elk stelsel is de vergelijking van de door de oorsprong gaande drager van het loodlijnstuk.
De oplossingen zijn:
met
Daaruit volgt:
In de vergelijkingen van de lijnen en hierboven is het getal – de vermenigvuldigingsfactor van – de richtingscoëfficiënt die de richting van de lijnen bepaalt. Omdat hebben de lijnen dezelfde richting.
Figuur 5. Als de hoek (groen hoekpunt) tussen twee lijnen kleiner wordt, dan gaat het hoekpunt naar oneindig.
De definitie van evenwijdigheid wordt in niet-euclidische meetkunde net zoals in een euclidische meetkunde aan de hand van de afstand opgesteld, maar is daarbij minder vanzelfsprekend.
Bij krommen kan evenwijdigheid ook aan de orde komen. Concentrische cirkels worden bijvoorbeeld evenwijdig genoemd. Het ontbreken van snijpunten is dus niet voldoende: een parabool en een cirkel die daar geheel binnen ligt hoeven nog niet evenwijdig te zijn. Daarom is het gebruikelijk ook de afstand van een punt tot een kromme erbij te betrekken. De conflictlijn van twee disjuncte vlakke krommen is de kromme die uit de punten bestaat, die tot beide krommen dezelfde afstand hebben. In formule:[4]
Het vinden van de waarde van is in de praktijk soms een probleem. Er kan evenwel gebruikgemaakt worden van huygenscirkels,[5] dit zijn concentrische cirkels met als middelpunt. is dan de lengte van de straal van de kleinste huygenscirkel die precies één punt met gemeen heeft, zie figuur 6.
In het algemeen zal het gemeenschappelijk raakpunt zijn van die huygenscirkel en . Het lijnstuk staat dan in loodrecht op de raaklijn in aan de cirkel.
Daarbij past de volgende (wat informele) definitie, die ook te gebruiken is bij de constructie van :
Het resultaat van een bewerking op een kromme volgens deze definitie is een kromme die in het algemeen niet van hetzelfde type is als . Alleen een lijn en een cirkel geven parallelkrommen die gelijkvormig zijn met het origineel. Zelfs bij kleine waarden van kunnen gladde krommen een parallelkromme hebben met singulariteiten, figuur 7.
De kromme wordt ook wel de iso-afstandslijn van genoemd.
Als de kromme in is vastgelegd met de vectorvergelijking
dan is de kromme een parallelkromme van als de volgende vectorvergelijking heeft:
Daarin is en de normaalvector van met lengte .
Seamless Wikipedia browsing. On steroids.