Loading AI tools
verzameling van methoden die worden gebruikt voor energieopslag op grote schaal in een elektriciteitsnet Van Wikipedia, de vrije encyclopedie
Energieopslagtechnieken worden gebruikt om vraag en aanbod van elektriciteit in een elektriciteitsnetwerk te balanceren. Voor de grootschalige belastingsverdeling van een onderling verbonden elektrisch netwerk sturen elektrische energieproducenten de overtollige dalurenelektriciteit via het transmissienet naar buffercentrales voor tijdelijke opslag van de energie. De energieopslaglocaties worden dan energieproducenten wanneer de vraag naar elektriciteit groter is. Dit vermindert de kosten van de piekvraag van elektriciteit door het beschikbaar maken van de energie voor gebruik tijdens de piekvraag zonder extra investeringen in overtollige productiecapaciteit dat het merendeel van de dag niet gebruikt zou worden.
Naargelang van de vorm van de opgeslagen energie onderscheidt men:[1]
Als opgepompt water buiten beschouwing wordt gelaten, is de opslagcapaciteit die verbonden is met het elektriciteitsnet, als volgt verdeeld:[1]
Wereldwijd gebeurt 99% van de energieopslag in pompcentrales (PHES, Pumped Hydro Energy Storage of SPHS, Seasonal Pumped Hydropower Storage). Dit zijn waterkrachtcentrales die bij elektriciteitsoverschot water van een lager naar een hoger gelegen spaarbekken pompen. Bij tekort aan elektriciteit stroomt het water terug en drijft het Francisturbines met generatoren aan. Wetenschappers van IIASA schatten dat met zo'n systeem wereldwijd 17.300 terawattuur kan opgeslagen worden op een betaalbare manier.[3]
Een voorbeeld is de waterkrachtcentrale van Coo-Trois-Ponts die 1100 MW kan leveren gedurende 5 uur, dan is het bekken leeg. In Vianden, Luxemburg staat een installatie van 1300 MW. De grootste pompcentrale ter wereld ligt te Bath County in de Verenigde Staten en kan 3000 MW piekvermogen leveren voor een investering van 1,6 miljard dollar. In Fengning in de Chinese provincie Hebei is een pompcentrale van 3600 MW piekvermogen in aanbouw tegen 2019.
Er bestaan ideeën om hetzelfde principe toe te passen maar dan met een spaarbekken 1400 m diep ondergronds, waarbij het water 's nachts naar een spaarbekken bovengronds wordt gepompt. Wanneer er piekbelasting is, wordt het water weer in het ondergrondse bekken gestort, waar het een turbine aandrijft diep in de schacht. Er bestonden plannen om 2,1 miljard euro te investeren in een dergelijk systeem met de naam OPAC Ondergrondse Pomp Accumulatie Centrale in Nederlands Limburg[4] op de Graetheide in de gemeente Sittard-Geleen, maar de plannen zijn opgeborgen omdat de ondergrond ongeschikt bleek en vanwege protest van de bevolking.[5]
Er bestaan ook ideeën voor offshore pompcentrales voor de kust van Nederland en in België om de energie van de offshore windparken op te slaan. Het eerste idee was het Plan Lievense in het Markermeer, het plan ging niet door omdat Amsterdam onder zou lopen bij een dijkbreuk. Ze bestaan uit een ringdijk die een kunstmatig eiland of energiedonut vormt in de vorm van een atol met in het midden een valmeer 40 m lager dan de zeespiegel. Het Nederlands project heet IOPAC Inverse Offshore Pump Accumulation.[6] In België zijn twee locaties voorzien: op de Wenduinebank en bij Zeebrugge.[7]
Een andere energieopslagtechniek CAES is het gebruik van dalurenelektriciteit om lucht te comprimeren, die wordt meestal opgeslagen in een oude mijn of een andere soortgelijke geologische structuur. Wanneer de vraag naar elektriciteit hoog is, gaat de gecomprimeerde lucht samen met aardgas naar een gasturbine om elektriciteit op te wekken.[8] Een dergelijke centrale werkt sinds 1978 te Huntorf om de kerncentrale Unterweser te bufferen. De installatie kan gedurende vier uur 321 MW piekvermogen leveren. Ze is eigendom van E.ON en werkt onbemand. De perslucht wordt op een druk van 72 bar 700 m diep opgeslagen in twee ondergrondse holtes van samen 310.000 m³, tot 60 m diameter en 150 m hoogte met water uitgespoeld in een zoutmijn.[9]
Een tweede installatie met aardgas van 110 MW werkt sinds 1991 te McIntosh (Alabama).[10]
Een nieuw project gebruikt geen aardgas en stuurt de perslucht meteen naar een expansieturbine. De pilootinstallatie ADELE (Adiabater Druckluftspeicher für die Elektrizitätsversorgung) van RWE te Staßfurt zal een piekvermogen van 90 MW en een opslagcapaciteit van 360 MWh hebben.[11] De bouw is in 2013 begonnen en zal in 2020 klaar zijn.[12] De investering ligt tussen 100 en 200 miljoen euro.[13]
Er wordt in Orkney, Scapa Flow onderzoek verricht, om 500 m onder water perslucht in een ballon op te slaan, zogenaamd UW-CAES.[14]
De cryogene energieopslag CES (cryogenic energy storage) of ook LAES (liquid air energy storage) werkt door omgevingslucht af te koelen tot −196 °C zodat ze vloeibaar wordt. Vloeibaar is de lucht in minder volume op te slaan dan als perslucht. De lucht wordt gelost en wordt opnieuw gasvormig, waarbij ze in een expansieturbine uitzet en elektriciteit opwekt. Voor een hoger rendement kan hierbij de bij comprimeren opgeslagen warmte of restwarmte worden gebruikt. Een pilootinstallatie van 300 kW piekvermogen en 2,5 MWh opslagcapaciteit werkt al enkele jaren te Slough in Engeland.[15] Een grotere installatie 5 MW, 15 MWh is besteld te Manchester tegen 2015 en een nog grotere 50 MW, 200 MWh is in planning.[16]
Sinds 2022 runt de Italiaanse firma Energy Dome een LEAS-pilot van 4 MWh met pure CO2 in plaats van lucht. CO2 is eenvoudiger te liquificeren dan lucht. Nadeel is wel dat de CO2 bij het genereren moet worden opgevangen. Daartoe wordt een enorme luchtzak gebruikt (een 'dome') waaraan Energy Dome ook haar bedrijfsnaam heeft ontleend.[17]
Accu-opslag kan al naargelang de grootte en locatie worden opgedeeld in een thuisbatterij (bv. Tesla Powerwall), buurtbatterij of een accupark. Soms is er een combinatie met andere energieopslagtechnieken: bv. accu's die zorgen voor de benodigde capaciteit en het vliegwiel het gevraagde piekvermogen.
Door KEMA is een grootschalig Europees onderzoek (Growders) uitgevoerd naar de opslag van elektriciteit op lokaal niveau in buurtbuffers.[18] Door de energietransitie (de overgang naar duurzame energiebronnen) en het toepassen van steeds meer lokale opwekking van elektriciteit is er grote behoefte aan stabilisatie van vraag en aanbod op lokaal niveau. Dit voorkomt investeringen in de verzwaring van lokale netten om deze fluctuaties op te vangen. Experimenten zijn gedaan met buurtbuffers bestaande uit een combinatie van accu's en vliegwielen. Een woonwijk van gemiddelde omvang heeft voldoende aan een opslagcapaciteit van 50 kWh en een piekvermogen van 150 kW. In Amerika vragen commerciële bedrijven al geld voor het stabiliseren van elektriciteitsnetten met buurtbuffers. In België is er het voorbeeld van een wijkbatterij in Oud-Heverlee die 90 kWh kan opslaan.[19][20]
Accu-opslag werd gebruikt in de eerste gelijkstroomnetten en is weer aan een opmars bezig. Als je een hoge capaciteit wil opslaan, lopen de kosten snel op, maar als FCR (Frequency Containment Reserve) is het nu al interessant. Het stabiliseren van de netfrequentie kunnen accu's namelijk beter (in milliseconden) dan conventionele centrales. Batterijsystemen verbonden met grote solid-state-wisselrichters worden gebruikt ter regulering van distributienetwerken.
Er zijn verschillende soorten accu's die kunnen worden gebruikt. Oplaadbare vloeistofaccu’s kunnen worden gebruikt als snelle-responsopslagmedia. Vanadium-Redox-accu’s en andere vloeistofaccu’s worden ook steeds meer gebruikt voor energieopslag en om de fluctuaties van wind- en zonne-energie op te vangen. Dit soort accu’s is relatief hoogefficiënt, 90% of meer, en heeft een lange levensduur. Ook natrium-zwavelaccu's worden daartoe gebruikt. Andere mogelijkheden zijn lithium-ion-accu's.
In België is er een sterke groei van batterijparken.[21] Enkele voorbeelden binnen de Benelux:
Ook in andere delen van de wereld zijn er voorbeelden van deze energieopslagtechniek:
Mechanische traagheid is de basis van de opslagmethode FES. Een roterend vliegwiel wordt versneld door een elektromotor. Elektriciteit wordt opgeslagen als kinetische energie van het vliegwiel. Wanneer energie nodig is, werkt de elektromotor als een generator die elektriciteit genereert, maar daardoor het vliegwiel afremt. Wrijving moet tot een minimum beperkt blijven ter verlenging van de opslagduur door het vliegwiel in vacuüm te plaatsen en magnetische lagers te gebruiken. De opslagcapaciteit wordt beperkt door de materiaalsterkte, dikwijls wordt koolstofvezel toegepast. Bij een klein scheurtje vliegt het vliegwiel aan scherven door de middelpuntvliedende kracht. Onderhoud van de lagers stelt een probleem. De techniek is beperkt tot enkele megawatt.[33] Te Stephentown, New York werkt een installatie van 20 MW.[34]
Magnetische opslag of SMES (Superconducting Magnetic Energy Storage) gebruikt het magneetveld van een elektrische stroom in een gekoelde supergeleidende spoel om elektrische energie op te slaan. De technologie is beperkt tot 2 megajoule.[35] Installaties werken met magneten in vloeibare stikstof, vloeibare waterstof of vloeibaar helium met toenemende complexiteit en efficiëntie. Kleine magneten zijn solenoïden, grotere zijn torisch. In Japan is een pilootinstallatie gebouwd met een torische spoel die 100 kWh energie kan opslaan en 20 MW piekvermogen leveren.[36]
Overschot aan elektriciteit kan door middel van elektrolyse omgezet worden tot waterstofgas (power to gas. Het rendement van electrolysers varieert van 60 tot 70 %. Waterstofgas kan (een deel van) grijze waterstof als grondstof voor de chemische industrie vervangen, worden gebruikt als brandstof voor waterstofauto's, worden geïnjecteerd in het aardgasnet, worden omgezet tot mierenzuur of na opslag weer omgezet worden tot elektriciteit. Al deze toepassingen kennen omzettingsverliezen.
Ondergrondse waterstofopslag is de praktijk van de opslag van waterstofgas in ondergrondse grotten,[37] zoutkoepels en uitgeputte olie- en gasvelden. Sinds vele jaren worden zonder problemen grote hoeveelheden gasvormige waterstof opgeslagen in ondergrondse grotten door ICI.[38] De opslag van grote hoeveelheden waterstof in ondergrondse mijnen, zoutkoepels,[39] aquifers[40] of uitgegraven rotsgrotten kan functioneren als energieopslag die noodzakelijk is voor de waterstofeconomie.[41] Het Europese project HyUnder[42] concludeerde in 2013 dat voor de opslag van wind- en zonne-energie 85 extra opslagplaatsen benodigd zijn omdat de huidige opslagsystemen PHES en CAES niet voldoende zijn.[43]
In Duitsland test men de technologie Power-to-gas of P2G om van elektriciteit gas te maken. Er zijn twee methodes die verschillen per project, de eerste methode is een concept dat het overschot aan elektriciteit door elektrolyse van water in waterstof omzet en met een verhouding 20% waterstof / 80% aardgas in het aardgasnet injecteert, E.ON bedrijft volgens deze methode te Falkenhagen[44] een installatie van 2 megawatt en ook een te Hamburg-Reitbrook.[45]
Het mengen van gassen is een bekende techniek die ook toegepast wordt in HCNG. Het Duitse aardgasnetwerk bestond vroeger uit stadsgas dat voor 60-65 % uit waterstof bestond. Het is ook mogelijk om tot 3% waterstof direct in het gasnet te injecteren.[46] De ÖVWG richtlijn beperkt de injectie tot 4% en tot 2% als er een gaspomp nabij is.[47] Meer mag niet vanwege de specificaties van de aangekoppelde gasturbines en CNG tanks aan het leidingennet.[48] Er is in de USA uitgebreid onderzoek gedaan naar de toevoeging van waterstof en er is geen extra explosiegevaar en corrosie van het aardgasnet of de drukstations.[49] Er gaan stemmen op om de beperking te versoepelen tot 10%,[50] 15%[51] of zelfs 20% waterstof.[52]
In de tweede minder efficiënte methode wordt het overschot aan elektriciteit door elektrolyse van water in waterstof omzet en in een tweede stap, met koolstofdioxide converteert in synthetisch methaan. De opslag van dit methaan kan gebeuren in de bestaande infrastructuur voor aardgas. Audi bedrijft volgens deze methode te Wertle een installatie van 6 megawatt om met elektriciteit van windenergie methaan te maken voor auto's op gas.[53] In Nederland overweegt de Gasunie een project in de Eemshaven om methaan te maken met windenergie en in het gasnet te injecteren.[54]
Er zijn ontwerpvoorstellen voor het gebruik van gesmolten zout als warmteopslag voor het opslaan van warmte verzameld door een zonnetoren zodat het kan worden gebruikt om bij slecht weer of 's nachts elektriciteit op te wekken.[55] Voorbeeld hiervan is de centrale van Gemasolar in Fuentes de Andalucia bij Sevilla in Zuid Spanje met een productie van ca. 110 GWh per jaar, en een productiereserve van 15 uur.[56] Het is ook mogelijk om elektriciteit om te zetten naar warmte, power to heat of P2H, hetzij om ermee te verwarmen, hetzij om uit gesmolten zout met een stirlingmotor later weer elektriciteit op te wekken.
WiseGRID is een H2020 Europees project dat technologieën test die zorgen voor een slimmer, stabieler, veiliger en meer consumentgericht Europees elektriciteitsnet. De bedoeling is meer gebruik te maken van opslagtechnologieën en een groter aandeel hernieuwbare energie. Energiecoöperatie Energent heeft een project Buurzame Stroom dat als testgebied werd gekozen voor het WiseGRID-project.[57]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.