From Wikipedia, the free encyclopedia
De Temperatur is en physikaalsche Grött, de vör allen in de Thermodynamik en wichtige Rull speelt. Meten warrt se in dat Internatschonale Eenheitensystem mit de Eenheit Kelvin. Eenige Länner in Europa bruukt butendem ok de Eenheit Grad Celsius (°C), annere arbeit ok mit Grad Fahrenheit (°F).
De Temperatur vun’n Körper wiest op sien Vermögen, binnere Energie in Form vun Warms aftogeven. Dorbi hannelt sik dat üm en stoffliche Egenschop – en intensive Grött, de dör Deelen gliek blifft – wogegen de Warms as en Energieform de Egenschop vun en Mengde hett – extensive Grött, de opdeelt warrn kann. Wenn en twee Körpers mit ünnerscheedliche Temperaturen tohopen bringt, warrt de Temperatur uttuuscht. Dorbi fleet so lang Warms vun den Körper mit de högeren Temperatur in den mit de sieteren, bit beide de glieke Temperatur opwiesen doot. De Enntemperatur liegt dorbi twüschen de beiden Anfangstemperaturen. Dat geev en grote Tall vun physikaalsche Egenschoppen, de direkt mit de Temperatur to doon hebbt un dorüm to’n Bestimmen vun de Temperatur bruukt warrn künnt. As Referenz deent dat Gesett vun Gay-Lussac för ideale Gasen över de Proportschonen vun de Volumina.
De Temperatur speelt’n grote Rull in tallrieke Rebeden vun de Natur un de Technik. Meist all physikaalschen un cheemschen Egenschoppen sünd mehr oder minner afhangig vun de Temperatur, as to’n Bispeel de Dicht oder de elektrische Wedderstand. Dat kann för’t Meten vun Temperaturen utnütt warrn. Mitünner kann en lütten Ünnerscheed in de Temperatur veel utmaken, as to’n Bispeel bi’t Ännern vun de Phaas. Bi Leevwesen warrt de Vörgäng vun’n Stoffwessel bedüden vun de Temperatur bestimmt. In’n Rahmen vun’t Utforschen vun de globalen Ophitten warrt ünnersöcht, woans en högeren Kunzentratschoon vun Driefhuusgasen op de Temperatur vun de Eerdatmosphäär wirkt.
Woans de Minsch de Temperatur föhlt, liggt nich alleen an de Temperatur sülvst, man hett ok mit den Warmsstroom un de Liefaktivität to doon. De föhlte Temperatur kann sik mitünner düchtig vun de physikaalschen Temperatur ünnerscheden.
All Stoffen bestaht ut bannig lütte Deelken, de Atomen un Molekülen. Disse Deelken bewegt sik ahn Ünnerbreken, wobi twüschen jem Kräft wirken doot. De Snelligkeiten vun all Deelken vun een Stoff sünd nich gliek groot, man in’t Middel sünd se 0, wenn sik de Körper nich bewegt. Man dat gellt nich in’t Middel vun den Bedrag un dat Quadrat vun de Snelligkeiten. Wo groot dat middlere Snelligkeitsquadrat vun all Deelken vun’n Stoff is, hangt af vun de Oort vun’n Stoff, vun sien Phaastostand un vör allen vun sien Temperatur. För faste, fletige un gasförmige Stoffen gellt: Je grötter de Temperatur vun en Stoffmengde is, üm so grötter is dat middlere Snelligkeitsquadrat vun all Deelken vun’n Stoff. De Tosamenhang twüschen de Temperatur un dat middlere Snelligkeitsquadrat vun de lüttsten Deelken lett vermoden, dat dat en deepste Temperatur gifft, also en afsluten Nullpunkt, an den sik de lüttsten Deelken nich mehr bewegt.
De nipp un naue Tosamenhang twüschen de Temperatur un’t middlere Snelligkeitsquadrat vun Atomen un Molekülen is allgemeen teemlich kumplex. In’n Fall vun’t ideale Gas gifft dat aver en eenfacken Tosamenhang, de sik ok in en Tosamenhang vun Temperatur mit annere makroskopische physikaalsche Grötten wiest. Dat warrt utnütt bi’t Meten vun de Temperatur mit dat Gasthermometer.
De Theorie vun de Thermodynamik stellt ’n Verbinnen her twüschen de makroskopischen Grötten as de Temperatur un de Egenschoppen vun de mikroskopischen Atomen un Molekülen. Dör disse Theorie warrt ok de Temperaturafhangigkeiten vun verschedene annere physikalische Grötten verklort. In Betog to makroskopische Grötten warrt dorbi ok dat quantenmechaansche un relativistische Verhollenvun de lüttesten Deelken sett. As de Relativitätstheorie vör allen bi hoge Deelkensnelligkeiten en Rull speelt, warrt de Grötten blots bi bannig hoge Temperaturn vun ehr bestimmt. De Quantenmechanik dorgegen hett sünners bi lütte Temperaturen wat to seggen, also bi Temperaturen dicht an’n afsluten Nullpunkt, un verklort Phänomenen as Supraleitung, Suprafluidität un Bose-Einstein-Kondensatschoon.
Dat ideale Gas is en Modellvörstellen, de goot döögt, üm de Grundlagen vun de Thermodynamik un Egenschoppen vun de Temperatur dortostellen. Dorna sünd de Gasdeelken ’n Punkt, künnt aver liekers elastisch gegenenanner un gegen de Fattwand stöten. Annere Wesselwirken twüschen de Deelken gifft dat in dit Modell nich. För Gasen, de ut Atomen as lüttste Deelken bestaht is dat Modell en go’e Vereenfachen. Molekülen dorgegen künnt roteeren oder vibreeren un künnt ut den Grund nich as Punkten vereenfacht warrn.
För ideale Gasen is de Temperatur proportschonal to de middlere kinetische Energie vun de Deelken
mit as de Boltzmann-Konstant. In dissen Fall is also de makroskopische Grött Temperatur op eenfache Wies mit’n mikroskopische Deelkenegenschop verknütt. Bito gellt för ideale Gasen de allgemene Gasglieken, de de Grötten Temperatur, Volumen () un Druck () in’n Betog sett
wobi de Tall vun de Deelken in’t System is.
Ut beide Glieke folgt, dat dat en afsluuten Nullpunkt vun de Temperatur geven deit, an den sik de Deelken vun’t Gas nich mehr bewegt. De middlere kinetische Energie is denn gliek Null. Hollt man bi’t Afküllen den Druck fast, warrt dat Volumen vun’t Gas jümmer lütter un kunzerntreert sik an’n Temperaturnullpunkt op en eenzigen Punkt. Op de annern Siet kann een de allgemene Gasgelieken dorto bruken, üm över’t Meten vun Volumen un Druck de Temperatur to bestimmen. Dat warrt in en Gasthermometer ümsett. Bi disse Theermometers reckt in’n Gegensatz to annere Thermometers en Tweepunktlieken, vun wegen dat de Tosamenhang twüschen de Grötten bekannt is. Se egent sik dorüm goot, annere Thermometers to lieken.
Mitünner warrt de Temperatur verkehrt verstahn un as Maat för de Warms ansehn. De Warms oder Warmsenergie is aver nich dat sülve as de Temperatur. De Temperatur beschrifft den physikaalschen Tostand vun en System, wiel de Ännern vun de Warmsenergie de Ännern vun den Tostand weddergifft. En Ännern vun de Warmsenergie föhrt bi verschedene Orden vun Tostandsännern (t. B. isobar oder isochor) to ünnerscheedliche Temperaturännern. De Proportschoon vun Warmsännern to Temperaturännern warrt as Warmskapazität betekent.
Warms bewegt sik jümmer vun en System mit högere Temperatur na’t System mit de sieteren Temperatur, wenn dat mööglich is, dat Warms twüschen de System uttuuscht warrt. Dorüm kummt dat to’n Utgliek vun de Temperatur, un de Uttuusch vun de Warms is to Enn, wenn sik de Systemen in’t thermodynaamsche Gliekgewicht befinnt – wenn se also de glieke Temperatur hebbt. De Endtemperatur hangt dorvun af, wovun Warmskapazitäten de bedeeligten Systemen hebbt. Bi en högere Warmskapazität föhrt de glieke Warmsännern to en lüttere Ännern vun de Temperatur. Dat bedüüt, dat de Endtemperatur bi’t Mischen vun glieke Mengden vun twee Stoffen mit ünnerscheedliche Warmskapazitäten un Temperaturen dichter an de Temperatur vun den Stoff liggt, de de högere Warmskapazität hett. En Bispeel dorför is de Vergliek vun Water un Luft: Water hett en veel gröttere Warmskapazität as Luft. Dorüm kann en Badewann vull hitt Water ’n Ruum vell mehr ophitten as de sülve Mengde Luft mit de glieken Temperatur.
Wenn twee Körpers mit ünnerscheedliche Temperaturen in Kuntakt staht, warrt na’n nullten Hööftsatz vun de Thermodynamik solang Energie vun’t warmere na’t küllere Medium överdragen, bit beid in’n thermisch Gliekgewicht staht un de glieke Temperatur hebbt. Dat gifft dorbi dree Mööglichkeiten, de Warmsenergie to överdrägen:
De Minsch kann Temperaturen blots in’t Rebeet üm 30 °C föhlen. Wenn een dat nau nimmt, nimmt de Minsch nich de Temperatur wohr, man de Grött vun’n Warmsstroom dör de Böverflach vun de Huut. Dorüm snackt een ok vun de föhlte Temperatur. För’t Föhlen vun de Temperatur hett dat en poor Folgen:
All dit gellt nich alleen für’t Geföhl vun Minschen, ok in vele technische Anwennen geiht dat opletzt nich üm de Temperatur, man üm den Warmsstroom. So hett de Atmosphäär in en Hööch över 1.000 km en Temperatur vun mehr as 1.000 °C, liekers vergleiht dorin keen Satellit, as de Energieöverdrägen vun wegen de lütten Deelkendicht bannig lütt is.
De allgemene Definitschoon vun de Temperatur warrt över de afsluute Temperatur maakt. De formalen Egenschoppen vun de temperatur warrt in de Thermodynamik afhannelt. De Temperatur warrt hier as en systemegene, inetensive Tostandsgrött betekent. Defineert warrn kann se ok över de Entropie S, vun wegen dat ut de Egenschoppen vun disse Tostandsgrött folgt, dat S bi all Tostandsännern kunstant if, de ahn Warmsöverdrägen Q afloopt un torüchrullt warrn künnt:
T is de Tostandsfunkschoon un warrt dorbi so wählt, dat en Differential vun en Tostandsfunkschoon is. Na dat Poincaré-Lemma is dorto nootwennig un utrecken
Bin ideal Gas warrt disse Bedingen vun de Gastemperatur inhollen.
De statistishe Definitschoon vun de Temperatur is na Boltzmann:
Dorbi sünd:
Bi en düchtig grote Ansammeln vun Deelken un den Ümstand vun en ideal Gas kann een de Maxwell-Boltzmann-Verdeelen anwennen un in de Folg de nafolgen Definitschoon för de Temperatur finnen:
Hierbi sünd:
Dormit is de Temperatur en Maat för den dörsnittlichen nich utrichten – also tofalligen – Andeel vun de Bewegensenergie (kinetische Energie) vun en Ansammeln vun Deelken. Disse Deelken sünd dorbi de Molekülen vun de Luft oder en annert Gas, vun en Fletigkeit oder vun en Faststoff. In de statistischen Mechanik steiht de Temperatur in Tosamenhang mit de Energie op’n Freeheitsgrad. In’t ideale Gas, dat ut enkelte Atomen besteiht sünd dat dree Translatschoonsfreeheitsgraden för jeed Atom. Bi mehratomige Gasen künnt wietere Rotatschoonsfreehietsgraden dorto kamen.
Bi Gasen is dat ok mööglich, diessen Tosamenhang twüschen de Temperatur un de Deelkensnelligkeit na de Formel baven quantitativ antogeven. En verdubbeln vun de Temperatur op de Kelvin-Skalaföhrt bi ideale Gasen to’n Anstiegen vun de quadratish middelten Deelkensnelligkeit üm den Fakter 2½ = 1,414. Twee ünnerscheedliche Gasen hebbt denn de glieke Temperatur, wenn dat Produkt ut de Molmassen vun beide Gasen un de Quadraten vun de quadraatsch middelten Deelkensnelligkeit gliek groot is.
In’t thermische Gliekgewicht nimmt jede Freeheitsgrad vun de Materie (Bewegen, potentielle Energie, Swingen, elektroonsch Anregen usw.) en vun de Temperatur bestimmte Mengde an Energie op. Wo veel dat nipp un nau is, mutt ut de kanoonsche Verdeelen (Boltzmannkonstant) utrekent warrn un is dör de Proportschoon vun Energie to de Temperatur mol de Boltzmannkonstant kB bestimmt. Bi de foortlopen (klassischen) kinetischen Energie is dat nipp un nau kBT/2. De Boltzmannkonstant gifft en Tosamenhang twüschen Energie un Temperatur, de 11.606,7 Kelvin je Elektronenvolt bedriggt. Bi Ruumtemperatur (300 Kelvin) kummt dor 0,0258472 eV bi rut. De dörsnittliche kinetische Energie vun de Deelken is afhangig vun de Molekülmasse oder Molmasse. De sworen Deelken sünd dorbi aver ok langsomer. Bi ideale Gasen gliekt sik de högere Masse un de sietere Snelligkeit gegenseitig ut, worut dat Gesett vun Avogadro folgt.
Aver ok de thermische Energie is, as de Temperatur sülvst, blots en Middelweert in en Veeldeelkensystem. Ehr Tosamenhang mit de Deelkensnelligkeit kann ok ut de Maxwell-Boltzmann-Verdeelen afleddt warrn:
Dat thermische Gliekgewicht hett en wichtige Egenschop, de in de Thermodynamik to’t Formuleeren vun’n Nullten Hööftsatz föhrt.
Wenn sik en System A mit en System B un B sik ok in en thermisch Gliekgewicht mit en System C befinnt, denn befinnt sik ok A mit C in en thermisch Gelickgewicht. Dat thermische Gliekgewicht is also transitiv, un dormit warrt dat mööglich, de empirische Temperatur θ intoföhren. De is so defineert, dat twee Systemen jüst denn de glieke empirische Temperatur hebbt, wenn se sik in’t thermische Gliekgewicht befinnt.
De Temperatur warrt tomeist mit en Thermometer oder mit en Temperatursensor meten, de över’n thermischen Kuntakt funkschoneert. Üm den thermischen Kuntakt hertostellen, warrt go’e Warmsleitung, Konvekschoon oder en Strahlengliekgewicht twüschen den Sensor un dat Objekt, dat utmeten warrn schall, bruukt. De Meetnauigkeit kann t. B. dör en slecht utgleken Warmsstrahlen-Bilanz, dör Luftbewegen oder dör en tofallige Afleiden vun Warms an den Sensor rünnersett warrn. Theoretisch warrt de Meetnauigkeit dör de tofallige Brownsche Molekularbewegen ingrenzt.
Dat Bestimmen vun de Temperatur dör thermischen Kuntakt kann in veer Methoden ünnerscheedt warrn:
De Temperatur kann ok ahn Anröhren dör Meten vun de Warmsstrahlen bestimmt warrn, de vun all Körpers utsennt warrt, de’n Temperatur grööter as de afsluuten Nullpunkt afstrahlt. Meten warrt dorbi t. B. mit en Pyrometer oder mit en Thermografie-Kamera.
Afhangig vun de Temperatur künnt dorför verschedene Rebeden vun de Bülgenlängen bruukt waarn (kiek dorto ok Stefan-Boltzmann-Gesett oder Wiensch Schuuvgesett). Bi siete Temperaturen kamt dorför Bolometers, Mikrobolometers oder köhlte Halfleiderdetekters in Fraag. Bi hoge Temperaturen warrt nich-köhlte Fotodioden oder ok de visuelle Vergliek vun de Intensität un de Klöör vun’t Gleihn anwennt (Wolframfaden-Pyrometer).
Dat Bild wiest en Thermografie-Bild. Dorbi warrt en Verkehrtklörendorstellen vun de Strahlenemisschoon in’t middlere Infraroot (bi en Bülgenläng vun ruchweg 5…10 µm) tüügt, de sik dör Kalibreeren in Form vun en Farvskala an de Temperaturskala anbinnen lett. Links in’t Bild is de Spegeln vun de Strahlen vun dat hitte Objekt to sehn. Meetfehlers kammt dorbi, as ok bi de Pyrometers, dör ünnerscheedliche Emisschoonsgraden vun de Meetobjekten. Wenn de Emisschoonsgraden bekannt sünd, kann de Nauigkeit oder de Kuntrast bit rünner to Temperaturdifferenzen vun 0,01 K bedrägen.
Temperaturbestimmen över de Warmsstrahlen warrt ok in de Feernutkundschoppen un to’n Bestimmen vun de Böverflachentemperatur vun Steerns anwennt.
Bi en empirische Temperaturskala warrt de Grött vun de Temperatur eenfach fastleggt. Dormit kann de Angaav vun en Temperatur in Betog to en Verglieksweert sett warrn. Dat gifft twee Methoden, en Skala fasttoleggen:
Na de eersten Methood warrt twee Punkten fastleggt. Disse Fixpunkten schülln so wählt wesen, dat se in de Natur vörkamt un dör dör Experimenten navulltogen un reproduzeert warrn künnt. De Afstand twüschen de beiden fasten Punkten warrt denn glliekmatig indeelt. So is to’n Bispeel bi de Celsius-Skala de Volumenännern vun Quecksülver in hunnert Deelen opdeelt worrn, wiel bi de Fahrenheitskala sik op de Volumenännern vun Ethanol betütt, de ’n beten anners verlopen deit.
Bi de tweeten Methood reckt een Fixpunkt, de tomeist ok dör en Stoffegenschop fastleggt is (t. B. de Smöltpunkt vun’t Ies). Denn mutt noch de Afstand (twüschen twee Skalenstreken) oder ok de Grött vun de Eenheit fastleggt warrn.
En Methood, de nich dörsetten künn, ok wenn se eenige Vördelen bargt, orienteert sik an’t Volumenännern vun Gasen bi kunstanten Druck. As Eenheit is vun Rudolf Plank de Temperaturünnerscheed vörslahn worrn, de bi en Volumenännern üm den Fakter (1+1/273,15) vörliggt. En solke logarithmische Temperaturskala hett na baven un na ünnen keen Enn. En aflsuuten Nullpunkt warrt nich bruukt.
De Temperaturskala, de vundaag gellt, is de „International Temperature Scale of 1990“ (ITS-90).
De SI-Eenheit vun de thermodynaamschen Temperatur (Formelteken: T) is dat Kelvin mit dat Eenheitenteken K. Een Kelvin is de 273,16te Deel vun de thermodynaamschen Temperatur vun’n Tripelpunkt vun’t Water – dat is de Temperatur, bi de de faste, fletige un gasförmige Phaas vun en Stoff blangenenanner vörkamt. De Nullpunkt vun de Kelvinskala liggt bi’n afsluuten Nullpunkt. De Weert 273,16 is so wählt worrn, dat die Fixpunkten vun de histoorschen Celsius-Skala ruchweg 100 K uteneen leegt.
De Celsius-Temperatur (Formelteken: oder t) giofft na de hüütigen Definitschoon nich mehr de empirische Temperatur vun de histoorschen Celsius-Skala an, man de thermodynaamsche Temperatur vun de Kelvin-Skala mit Tallen, de üm 273,15 lütter sünd.
De Grött vun de Eenheit (°C) is de glieke as bi’t Kelvin. Verlööft is, dat Temperaturdifferenzen in °C as ok in Kelvin angeven warrt. De Weert is dorbi de glieke. Anraat warrt aver, Temperaturdifferenzen in Kelvin antogeven.
In de USA is de Fahrenheit-Skala mit de Eenheit °F jümmer noch begäng. De afsluute Temperatur op Grundlaag vun’t Fahrenheit warrt mit Grad Rankine (Eenheitenteken: °R) betekent. De Rankine-Skala hett den Nullpunkt bi’n afsluuten Nullpunkt, jüst so as de Kelvin-Skala. In’n Gegensatz to de Kelvin-Skala is de Skalenafstand dor aver jüst so as bi de Fahrenheit-Skala.
Skala | Kelvin | Celsius | Fahrenheit | Rankine | Delisle | Newton | Réaumur | Rømer |
---|---|---|---|---|---|---|---|---|
Eenheit | Kelvin | Grad Celsius | Grad Fahrenheit | Grad Rankine | Grad Delisle | Grad Newton | Grad Réaumur | Grad Rømer |
Eenheitenteken | K | °C | °F | °Ra, °R | °De, °D | °N | °Ré, °Re, °R | °Rø |
eerste Betogspunkt F1 | T0 = 0 K |
(H2O) = 0 °C |
TSchm(H2O) = 32 °F* |
T0 = 0 °Ra |
TSchm(H2O) = 150 °De |
TSchm(H2O) = 0 °N |
TSchm(H2O) = 0 °Ré |
TSchm(H2O) = 7,5 °Rø |
tweete Betogspunkt F2 | Tt(H2O) = 273,16 K |
(H2O) = 100 °C |
TKaak(H2O) = 212 °F* |
– | TKaak(H2O) = 0 °De |
TKaak(H2O) = 33 °N |
TKaak(H2O) = 80 °Ré |
TKaak(H2O) = 60 °Rø |
Skalenintervall | (F2−F1) / 273,16 | (F2−F1) / 100 | (F2−F1) / 180* | 1 °Ra = 1 °F | (F1−F2) / 150 | (F2−F1) / 33 | (F2−F1) / 80 | (F2−F1) / 52,5 |
Utfinner | William Thomson („Lord Kelvin“) | Anders Celsius | Daniel Fahrenheit | William Rankine | Joseph-Nicolas Delisle | Isaac Newton | René-Antoine Ferchault de Réaumur | Ole Rømer |
Johr vun’t Inföhren | 1848 | 1742 | 1714 | 1859 | 1732 | ~ 1700 | 1730 | 1701 |
Rebeet, woneem de Skala begäng is | weltwiet (SI-Einheit) | weltwiet | USA, Jamaika | USA | Russland (19.Jhd.) | – | Westeuropa bit 19. Jhd. | – |
* De Angaven för de Fahrenheit-Skala beschrievt de Definitschoon as se vundaag gellt. Na de oorsprünglichen Definitschoon dör Fahrenheit weer de Temperatur vun en Küllmischen vun Ies, Water un Salmiak oder Seesolt (−17,8 °C = 0 °F) un de „Lieftemperatur vun’n gesunnen Minschen“ (35,6 °C = 96 °F) as Fixpunkten bruukt mit (F2−F1) / 96 Skalendeelen.
na \ vun | Kelvin-Skala (K) | Celsius-Skala (°C) | Réaumur-Skala (°Ré) | Fahrenheit-Skala (°F) |
---|---|---|---|---|
TKelvin | = TK | = + 273,15 | = TRé · 1,25 + 273,15 | = (TF + 459,67) ÷ 1,8 |
= TK − 273,15 | = | = TRé · 1,25 | = (TF − 32) ÷ 1,8 | |
TRéaumur | = (TK − 273,15) · 0,8 | = · 0,8 | = TRé | = (TF − 32) ÷ 2,25 |
TFahrenheit | = TK · 1,8 − 459,67 | = · 1,8 + 32 | = TRé · 2,25 + 32 | = TF |
TRankine | = TK · 1,8 | = · 1,8 + 491,67 | = TRé · 2,25 + 491,67 | = TF + 459,67 |
TRømer | = (TK − 273,15) · 21/40 + 7,5 | = · 21/40 + 7,5 | = TRé · 21/32 + 7,5 | = (TF − 32) · 7/24 + 7,5 |
TDelisle | = (373,15 − TK) · 1,5 | = (100 − ) · 1,5 | = (80 − TRé) · 1,875 | = (212 − TF) · 5/6 |
TNewton | = (TK − 273,15) · 0,33 | = · 0,33 | = TRé · 0,4125 | = (TF − 32) · 11/60 |
na \ vun | Rankine-Skala (°Ra) | Rømer-Skala (°Rø) | Delisle-Skala (°De) | Newton-Skala (°N) |
---|---|---|---|---|
TKelvin | = TRa ÷ 1,8 | = (TRø − 7,5) · 40/21 + 273,15 | = 373,15 − TDe · 2/3 | = TN · 100/33 + 273,15 |
= TRa ÷ 1,8 − 273,15 | = (TRø − 7,5) · 40/21 | = 100 − TDe · 2/3 | = TN · 100/33 | |
TRéaumur | = TRa ÷ 2,25 - 218,52 | = (TRø − 7,5) · 32/21 | = 80 − TDe · 8/15 | = TN · 80/33 |
TFahrenheit | = TRa − 459,67 | = (TRø − 7,5) · 24/7 + 32 | = 212 − TDe · 1,2 | = TN · 60/11 + 32 |
TRankine | = TRa | = (TRø − 7,5) · 24/7 + 491,67 | = 671,67 − TDe · 1,2 | = TN · 60/11 + 491,67 |
TRømer | = (TRa − 491,67) · 7/24 + 7,5 | = TRø | = 60 − TDe · 0,35 | = TN · 35/22 + 7,5 |
TDelisle | = (671,67 − TRa) · 5/6 | = (60 − TRø) · 20/7 | = TDe | = (33 − TN) ÷ 0,22 |
TNewton | = (TRa − 491,67) · 11/60 | = (TRø − 7,5) · 22/35 | = 33 − TDe · 0,22 | = TN |
Meetwert \ Skala | Fahrenheit* | Rankine | Réaumur | Celsius | Kelvin |
---|---|---|---|---|---|
middlere Bavenflachtemperatur vun de Sünn | 10 430 °F | 10 890 °Ra | 4 622 °R | 5 777 °C | 6 050 K |
Smöltpunkt vun Iesen | 2 795 °F | 3 255 °Ra | 1 228 °R | 1 535 °C | 1 808 K |
Smöltpunkt vun Blie | 621,43 °F | 1081,10 °Ra | 261,97 °R | 327,46 °C | 600,61 K |
Kaakpunkt vun Water | 212 °F | 671,67 °Ra | 80 °R | 100 °C | 373,15 K |
hööchste buten meten Lufttemperatur | 136,04 °F | 595,71 °Ra | 46,24 °R | 57,80 °C | 330,95 K |
Lieftemperatur vun’n Minschen na Fahrenheit | 96 °F | 555,67 °Ra | 28,44 °R | 35,56 °C | 308,71 K |
Tripelpunkt vun Water | 32,02 °F | 491,69 °Ra | 0,01 °R | 0,01 °C | 273,16 K |
Klaampunkt vun Water | 32 °F | 491,67 °Ra | 0 °R | 0 °C | 273,15 K |
sietste Temperatur in Danzig, Winter 1708/09 | 0 °F | 459,67 °Ra | −14,22 °R | −17,78 °C | 255,37 K |
Smöltpunkt vun Quecksülver | −37,89 °F | 421,78 °Ra | −31,06 °R | −38,83 °C | 234,32 K |
sietste buten meten Lufttemperatur | −130,90 °F | 328,77 °Ra | −72,40 °R | −90,50 °C | 182,65 K |
Klaampunkt vun Ethanol | −173,92 °F | 285,75 °Ra | −91,52 °R | −114,40 °C | 158,75 K |
Kaakpunkt vun Stickstoff | −320,44 °F | 139,23 °Ra | −156,64 °R | −195,80 °C | 77,35 K |
afsluut Nullpunkt | −459,67 °F | 0 °Ra | −218,52 °R | −273,15 °C | 0 K |
* De Angaven för de Fahrenheit-Skala beteht sik op de oosprüngliche Definitschoon, de nich nipp un nau mit de hüütige Definitschoon vun de Fahrenheit-Skala övereenstimmt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.