From Wikipedia, the free encyclopedia
ആൽബർട്ട് ഐൻസ്റ്റൈൻ മുന്നോട്ട് വച്ച വിശിഷ്ട ആപേക്ഷികതാസിദ്ധാന്തം, സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം എന്നീ രണ്ട് സിദ്ധാന്തങ്ങളെ പൊതുവായാണ് ആപേക്ഷികതാസിദ്ധാന്തം എന്ന് വിളിക്കുന്നത് (ആംഗലേയം: Theory of relativity). ചുരുക്കരൂപത്തിൽ ആപേക്ഷികത എന്ന് മാത്രമായും പറയാറുണ്ട്.
സാമാന്യ ആപേക്ഷികത | ||||||||||||
ഐൻസ്റ്റൈൻ ഫീൽഡ് സമവാക്യങ്ങൾ | ||||||||||||
പരിചയപ്പെടുത്തൽ... ഗണിതശാസ്ത്രം... ഉപാധികൾ
| ||||||||||||
1905-ലാണ് ആൽബർട്ട് ഐൻസ്റ്റൈൻ തന്റെ വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം (Special Relativity) ആവിഷ്കരിച്ചത്. പത്തുവർഷത്തിനു ശേഷം 1915-ൽ അദ്ദേഹം സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തം (General Relativity) അവതരിപ്പിച്ചു. നിരീക്ഷണം നടത്തുന്ന രീതിക്കനുസരിച്ച് നിരീക്ഷണ ഫലത്തിലും മാറ്റമുണ്ടാവുന്നുവെന്ന് വിശിഷ്ട ആപേക്ഷികതാസിദ്ധാന്തം പറയുന്നു. ഗുരുത്വാകർഷണം മൂലം വസ്തുകൾക്കനുഭവപ്പെടുന്ന ഭാരവും ത്വരണവും വിശദീകരിക്കുകയാണ് സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം ചെയ്തത്.
ഇരുപതാം നൂറ്റാണ്ടിലെ ഏറ്റവും വലിയ ഭൗതികശാസ്ത്ര വിപ്ലവമായി ആപേക്ഷികതാ സിദ്ധാന്തത്തെ കണക്കാക്കാം. ആപേക്ഷികതാ സിദ്ധാന്തത്തിന്റെയും ക്വാണ്ടം ബലതന്ത്രത്തിന്റെയും വരവോടു കൂടി ശാസ്ത്രത്തിന്റെ കാഴ്ചപ്പാടുകൾ തന്നെ ക്ലാസിക്കൽ ഭൗതികമെന്നും, ക്വാണ്ടം ഭൗതികമെന്നും രണ്ടായി മാറ്റപ്പെട്ടു. ആപേക്ഷികതാസിദ്ധാന്തം ആളുകൾ മനസ്സിലാക്കിയതു കൊണ്ടല്ല അതിന്റെ ദുർഗ്രാഹ്യത കൊണ്ടാണ് കൂടുതലും അറിയപ്പെട്ടത്.
വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം രണ്ട് അടിസ്ഥാന പ്രമാണങ്ങൾ മുന്നോട്ടുവയ്കുന്നു.[1]
ഈ രണ്ടു അടിസ്ഥാന പ്രമാണങ്ങൾ ഉപയോഗിച്ച് വളരെ വിപുലമായ ഒരു ബലതന്ത്ര ചട്ടക്കൂട് ഉണ്ടാക്കിയെടുത്തിട്ടുണ്ട്.
ഒന്നും രണ്ടും പ്രമാണങ്ങൾ മൂലം പ്രകാശത്തിന്റെ വേഗത ആധാരവ്യൂഹങ്ങൾക്കിടയ്ക്ക് സ്ഥിരമായി നിൽക്കുന്നത് കൊണ്ട് സ്ഥലകാല അളവുകളിൽ സാരമായ മാറ്റങ്ങൾ വരുത്തേണ്ടിയിരിയ്ക്കുന്നു. സാധാരണ ക്ലോക്കുകളും സ്കെയിലുകളും ഉപയോഗിച്ച് ചലിച്ചുകൊണ്ടിരിയ്ക്കുന്ന മറ്റേ ആധാരവ്യൂഹത്തിലെ സമയവും ദൂരവും അളക്കുക എന്നുള്ളത് അസാധ്യമാകുന്നു. ആധാരവ്യൂഹങ്ങൾക്ക് ഇടയിൽ സിഗ്നലുകൾ പാസ് ചെയ്യേണ്ടി വരുന്നതുകൊണ്ട് വിശിഷ്ട ആപേക്ഷികതാസിദ്ധാന്തത്തിന്റെ പ്രബന്ധത്തിൽ ഐൻസ്റ്റീൻ പ്രകാശം ഉപയോഗിച്ച് പ്രവർത്തിയ്ക്കുന്ന ക്ലോക്കുകളും സ്കെയിലുകളും വിശദീകരിയ്ക്കുന്നു.[2] എന്നാൽ പ്രകാശത്തിനും മറ്റു വൈദ്യുതകാന്തിക തരംഗങ്ങൾക്കും ആധാരവ്യൂഹങ്ങളുമായി ആപേക്ഷിക വേഗത്തിൽ വ്യത്യാസം വരാത്തതുകൊണ്ട് ഒരു ആധാരവ്യൂഹത്തിൽ നിന്നും ഈ സിഗ്നലുകൾ ഉപയോഗിച്ച് സമയവും നീളവും അളക്കുമ്പോൾ ചില മാറ്റങ്ങൾ വരുന്നു. ഈ മാറ്റങ്ങൾ ആധാരവ്യൂഹങ്ങൾ തമ്മിലുള്ള ആപേക്ഷികവേഗത്തെ അടിസ്ഥാനപ്പെടുത്തി ഇരിയ്ക്കുന്നു. ഒരു ആധാരവ്യൂഹത്തിലെ സമയ/നീള അളവുകളെ മറ്റേ ആധാരവ്യൂഹത്തിന്റെ ആപേക്ഷിക വേഗതയ്ക്കനുസരിച്ച് മാറ്റാനുള്ള ഒരു സൂത്രവാക്യം തന്റെ പ്രബന്ധത്തിൽ ഐൻസ്റ്റീൻ അവതരിപ്പിച്ചു. എന്നാൽ ഹെൻഡ്രിക് ലോറെൻറ്സ് എന്ന ഡച്ച് ശാസ്ത്രജ്ഞൻ ആപേക്ഷികതാ സിദ്ധാന്തത്തിന്റെ പ്രസിദ്ധീകരണത്തിന് മുൻപ് തന്നെ പ്രസിദ്ധീകരിച്ച ലോറെൻറ്സ് ട്രാൻസ്ഫോർമേഷൻ എന്ന രേഖീയ ട്രാൻസ്ഫോർമേഷൻ ആയിരുന്നു ഐൻസ്റ്റീന് ലഭിച്ച ഫലം.[3]
സാധാരണ ബലതന്ത്രത്തെ (classical mechanics) ഈ ബലതന്ത്രം കൂടുതൽ മെച്ചപ്പെട്ട ഫലങ്ങൾ തരുന്നു. ഉദാഹരണം : മിച്ചെൽസൺ-മോർലി പരീക്ഷണം, മ്യുവോൺ പരീക്ഷണം (Muon Experiment) തുടങ്ങിയവ ഇതിൽ ചിലതാണ്. പക്ഷേ ഈ തിയറി നടത്തിയ ഗണിതപ്രവചനമാണ് കൂടുതൽ പ്രധാനം. പിണ്ഡത്തെ ഊർജ്ജമാക്കി മാറ്റാം എന്ന പ്രവചനത്തെ 1945 ലെ ഹിരോഷിമ ആണവസ്ഫോടനം അടക്കം അസംഖ്യം പ്രായോഗികഫലങ്ങൾ സാധൂകരിച്ചു.[4]. ഈ സിദ്ധാന്തം മുന്നോട്ട് വെയ്ക്കുന്ന മറ്റു ചില ഫലങ്ങൾ താഴെ കൊടുക്കുന്നു.
വ്യത്യസ്ത കേവല വേഗതകളിൽ രണ്ടു പേർ സഞ്ചരിച്ചു കൊണ്ടിരിയ്ക്കുന്നു എന്നും ഇവ തമ്മിലുള്ള ആപേക്ഷികപ്രവേഗം എപ്പോഴും ഒന്നുതന്നെയായി നിലകൊള്ളുന്നു എന്നും ഇരിയ്ക്കട്ടെ. ഇതിൽ ഒരാളുടെ ആധാരവ്യൂഹത്തിൽ ഒരേ സമയം നടക്കുന്ന രണ്ടു കാര്യങ്ങൾ മറ്റേയാളുടെ ആധാരവ്യൂഹത്തിൽ നിന്നും നോക്കുമ്പോൾ വ്യത്യസ്ത സമയങ്ങളിൽ നടക്കുന്നതായി ആയിരിക്കും തോന്നുക.[lower-roman 1][5]
ഏതൊരു വസ്തുവിനും അതിന്റെ നിശ്ചലാവസ്ഥയിലും ചലനാവസ്ഥയിലും തുല്യ നീളമാണെന്ന് നാം കരുതുന്നു. ഒരു വസ്തുവിന്റെ നീളത്തിന് അതിന്റെ പ്രവേഗത്തിനനുസരിച്ച് മാറ്റം വരുന്നു എന്ന് വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം തെളിയിക്കുന്നു.[6] ഒരു വസ്തുവിന്റെ പ്രവേഗം കൂടിക്കൂടി ഏകദേശം പ്രകാശത്തിന്റെ പ്രവേഗത്തിനടുത്തെത്തുമ്പോൾ അതിന്റെ നീളം വളരെയധികം കുറയുന്നു. ഈ പ്രതിഭാസം സാധാരണ ഒരു കാർ ഓടുമ്പോഴൂം സംഭവിക്കുന്നുണ്ട്, പക്ഷേ കാറിന്റെ പരമാവധി വേഗത പ്രകാശ വേഗതയുമായി താരതമ്യപ്പെടുത്തുമ്പോൾ വളരെക്കുറവാണെന്നതിനാൽ കാറിനുണ്ടാകുന്ന നീളവ്യത്യാസം വളരെ ചെറുതാണ് അതുകൊണ്ട് നാമതറിയുന്നില്ലെന്ന് മാത്രം.
ആപേക്ഷികതാ സിദ്ധാന്തത്തിന്റെ മറ്റൊരു കണ്ടെത്തലാണ് സമയം ആപേക്ഷികമാണെന്നുള്ളത്. ഇതു പ്രകാരം ഒരു നിശ്ചിത വേഗതയിൽ സഞ്ചരിച്ചുകൊണ്ടിരിക്കുന്ന രണ്ടു പേർക്കിടയിൽ വ്യത്യസ്ത സമയമാണ് ഉള്ളത്. അവർ തമ്മിലുള്ള ആപേക്ഷിക വേഗത കൂടുംതോറും ഓരോരുത്തരും മറ്റേ ആളുടെ പ്രാദേശിക സമയ അളവുകൾ സ്വന്തമായി അളക്കാൻ ശ്രമിച്ചാൽ കൂടിവരുന്നതായി കാണും. അവരുടെ ആപേക്ഷിക വേഗത പ്രകാശവേഗത ആകാവുന്ന സാങ്കല്പിക അവസ്ഥയിൽ ഒരാളുടെ സമയം അനന്തമാണെന്ന് മറ്റേ ആൾ അളന്നെടുക്കും. ഇതുമായി ബന്ധപ്പെട്ട് രസകരമായൊരു ഉദാഹരണമുണ്ട്,ഇരട്ടകളുടെ വൈരുദ്ധ്യം.
സെക്കന്റിൽ 260,000 കി.മി വേഗത്തിൽ ഉയർന്നു പൊങ്ങുന്ന ഒരു റോക്കറ്റ് സങ്കൽപ്പിക്കുക. ഇതിൽ കയറി ഇരട്ടക്കുട്ടികളിലൊരാൾ ഒരു പ്രപഞ്ച സർക്കീട്ടുനടത്തുകയും മറ്റേയാൾ നാട്ടിൽ വിശ്രമിക്കുകയും ചെയ്തെന്നു കരുതുക. നാട്ടിൽ താമസിച്ചയാൾക്ക് പത്ത് വയസുകൂടുമ്പോൾ സഞ്ചാരിക്ക് അഞ്ച് വയസേകൂടുകയുള്ളൂ. ഈ വൈരുദ്ധ്യത്തെ ഇരട്ടകളുടെ വൈരുദ്ധ്യം എന്നുപറയുന്നു.[7]
വളരെ വേഗത്തിൽ പോകുന്ന ഒരു വസ്തുവിന്റെ പിണ്ഡത്തിലും വത്യാസം വരുന്നതായി ആപേക്ഷികതാ സിദ്ധാന്തം പറയുന്നു. പ്രവേഗം കൂടുംതോറും പിണ്ഡം കൂടുന്നു. പ്രകാശ വേഗത്തിലെത്തുമ്പോൾ പിണ്ഡം അനന്തമാകുന്നു. ഒരിക്കലും പിണ്ഡമുള്ള ഒരു വസ്തുവിന് പ്രകാശ വേഗതയിൽ സഞ്ചരിക്കാൻ കഴിയില്ല എന്ന് പറയുന്നത് ഇതിനാലാണ്.
എന്ന പ്രസിദ്ധമായ സമവാക്യം രൂപം കൊണ്ടത് ആപേക്ഷികതാ സിദ്ധാന്തത്തിൽ നിന്നുമാണ്. ദ്രവ്യവും ഊർജവും ഒന്നുതന്നെയാണെന്ന് ഐൻസ്റ്റൈൻ ഇതിലൂടെ സ്ഥാപിച്ചെടുത്തു.
ദ്രവ്യവും ഊർജവും രണ്ടാണെന്നാണ് വളരെക്കാലം മുൻപുമുതൽ മനുഷ്യൻ പരിഗണിച്ചിരുന്നത്. ഒരു പ്രത്യേക പിണ്ഡം ഉള്ള വസ്തുവിന് തത്തുല്യമായ ഒരു ഊർജ്ജം ഉണ്ടെന്നും, അതുപോലെ തന്നെ ഒരു പ്രത്യേക ഊർജ്ജത്തിന് തത്തുല്യമായ പിണ്ഡം ഉണ്ടെന്നുമുള്ള പ്രസ്താവനയാണ് ഇത്. തന്റെ വിശിഷ്ട ആപേക്ഷികതാസിദ്ധാന്തത്തിലൂടെ ഐൻസ്റ്റീൻ പിണ്ഡവും ഊർജവും പരസ്പരം കണക്കാക്കി എടുക്കാനുള്ള സൂത്രവാക്യം അവതരിപ്പിച്ചു.
ഇവിടെ എന്നത് ഊർജവും എന്നത് പിണ്ഡവുമാണ്. പ്രകാശത്തിന്റെ ശൂന്യതയിലുള്ള വേഗതയാണ് .
ശൂന്യതയിലെ പ്രകാശവേഗം ഒരു വിശ്വൈകസ്ഥിരാങ്കമാണ്. ഇതിന്റെ വില 3*10^8 m/sec ആണ്. [8]
ത്വരണം (acceleration) ഇല്ലാത്ത രണ്ടു ആധാരവ്യൂഹങ്ങൾക്കിടയിലെ ബലതന്ത്രത്തിന്റെ സിദ്ധാന്തമാണ് മുകളിൽ കണ്ട വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം. എന്നാൽ ഒരു നിശ്ചിത ത്വരണം ഉള്ള രണ്ടു വ്യൂഹങ്ങൾക്കിടയിൽ ഈ സിദ്ധാന്തം ഉപയോഗിയ്ക്കാൻ സാധിയ്ക്കില്ല. 1905 ൽ പ്രസിദ്ധീകരിച്ച തന്റെ വിശിഷ്ട സിദ്ധാന്തത്തിന് പതിനൊന്ന് വർഷങ്ങൾക്കു ശേഷമാണ് ഐൻസ്റ്റീൻ ത്വരണത്തെ തന്റെ ബലതന്ത്ര ചട്ടക്കൂടിൽ ഉൾക്കൊള്ളിച്ചത്. ഇതിനിടയ്ക്ക് ഐൻസ്റ്റീനിന്റെ പ്രബന്ധത്തെ ആധാരമാക്കി 1908 ൽ ഐൻസ്റ്റീൻ'ന്റെ അധ്യാപകനായ ഹെർമാൻ മിൻകൗസ്ക്കി സ്ഥലത്തെയും സമയത്തെയും കൂട്ടിയിണക്കി സ്ഥലകാലം എന്ന ആശയം അവതരിപ്പിച്ചു. [9] മൂന്ന് മാനങ്ങളുള്ള സ്ഥലവും സാങ്കൽപ്പിക മാനമായ സമയവും കൂട്ടിയിണക്കി ഉണ്ടാക്കിയ നാലു മാനങ്ങളുള്ള സ്ഥലകാലം എന്ന ആശയം ആപേക്ഷികതയുടെ ഉപയോഗം എളുപ്പമാക്കി. ഈ ആശയത്തെ കൂടുതൽ വികസിപ്പിച്ച് ബേൺഹാർഡ് റീമാൻ അവതരിപ്പിച്ച വക്രീയജ്യാമിതിയുടെ (റീമാനിയൻ ജ്യാമിതി) ആശയങ്ങളും തന്റെ തന്നെ ഗുരുത്വ-ത്വരണ തുല്യതാ ആശയവും സമ്മേളിപ്പിച്ചാണ് ഐൻസ്റ്റീൻ സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തം ഉരുത്തിരിച്ചെടുത്തത്.
പിണ്ഡത്തിന്റ സ്വാധീനം സ്ഥലകാലത്തെ വക്രീയമാക്കുന്നു എന്നും ഈ വക്രീയ പാതയിലൂടെയുള്ള വസ്തുക്കളുടെ നേർരേഖ (geodesic) സഞ്ചാരമാണ് ഗുരുത്വാകർഷണം എന്ന് നമ്മൾ വിളിയ്ക്കുന്ന പ്രതിഭാസം എന്നും ആയിരുന്നു ഇതിലെ പ്രധാന ആശയം. വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തത്തിൽ ആവിഷ്കരിച്ച മിൻകോവ്സ്കി രേഖീയ സ്ഥലകാലം ഇവിടെ വക്രീയ സ്ഥലകാലം (curved spacetime) ആയി പരിണമിയ്ക്കുന്നു. അമേരിക്കൻ സൈദ്ധാന്തികഭൗതിക ശാസ്ത്രജ്ഞനായ ജോൺ വീലറിന്റെ ഉദ്ധരണി പ്രകാരം "ദ്രവ്യം സ്ഥലകാലത്തോട് എങ്ങനെ വളയണം എന്ന് കല്പിയ്ക്കുന്നു. സ്ഥലകാലം ദ്രവ്യത്തോട് എങ്ങനെ ചലിയ്ക്കണം എന്നും"[10]
സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തത്തിന്റെ ചില ഫലങ്ങൾ താഴെ കൊടുക്കുന്നു.
If events E1 and E2 are simultaneous in one frame of reference, then in a second frame that moves with speed v in the direction pointing from E1 to E2, the event E2 happens at a time Dv/c^2 earlier than the event E1, where D is the distance between the two events in the second frame.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.