From Wikipedia, the free encyclopedia
ശൂന്യാകാശത്തേക്ക് എത്തിച്ചേരുവാനായി നിർദ്ദേശിക്കപ്പെട്ടിട്ടുള്ള ഒരു ഗതാഗത മാർഗ്ഗമാണ് സ്പേസ് എലവേറ്റർ (ഇംഗ്ലീഷ്: space elavator). [1] വലിയ റോക്കറ്റുകളുടെ സഹായമില്ലാതെ തന്നെ ഗ്രഹോപരിതലത്തിൽ നിന്നും ബഹിരാകാശ വാഹനങ്ങളെ ഒരു കേബിൾ വഴി നേരിട്ട് ബഹിരാകാശത്തേക്ക് എത്തിക്കുവാനുള്ള സംവിധാനമാണിത്. ഗ്രഹോപരിതലം മുതൽ ബഹിരാകാശം വരെ എത്തുന്ന വിധത്തിൽ സജ്ജമാക്കിയിരിക്കുന്ന ഈ കേബിളാണ് സ്പേസ് എലവേറ്ററിന്റെ പ്രധാന ഘടകം. ഈ കേബിളിനെ ടെതർ (Tether) എന്നും വിളിക്കാറുണ്ട്.[1]
ഭൂമിയിൽ നിർമ്മിക്കുന്ന സ്പേസ് എലവേറ്ററിലെ കേബിളിന്റെ ഒരഗ്രം ഭൂമദ്ധ്യരേഖയ്ക്കു സമീപത്തായി കരയിലോ സമുദ്രത്തിലോ ഉറപ്പിക്കുന്നു. കേബിളിന്റെ മറ്റേ അഗ്രം ഭൂസ്ഥിര ഭ്രമണപഥത്തിനു പുറത്ത് (ഭൂമിയിൽ നിന്ന് 35,800 കിലോമീറ്റർ അകലെ) ഒരു ഛിന്നഗ്രഹത്തോളം ഭാരമുള്ള വസ്തുവിൽ (കൗണ്ടർ വെയ്റ്റ്) ഘടിപ്പിക്കുന്നു. കേബിളിൽ അനുഭവപ്പെടുന്ന ഗുരുത്വാകർഷണ ബലവും അതിനു വിപരീതമായുണ്ടാകുന്ന അഭികേന്ദ്രബലവും (Centrifugal force) കേബിൾ നിവർന്നു നിൽക്കുവാൻ സഹായിക്കുന്നു. ക്ലൈമ്പർ (Climber) എന്ന ഉപകരണത്തിൻറെ സഹായത്തോടെ സ്പേസ് ക്രാഫ്റ്റ്, കൃത്രിമോപഗ്രഹങ്ങൾ, മറ്റു വസ്തുക്കൾ എന്നിവയെല്ലാം ഈ കേബിളിലൂടെ ബഹിരാകാശത്തേക്ക് എത്തിക്കാം.[2]
ഭൂമിയുടെ ശക്തമായ ഗുരുത്വാകർഷണത്തെയും സ്വന്തം ഭാരത്തെയും ക്ലൈമ്പറിന്റെ ഭാരത്തെയും താങ്ങുവാൻ തക്ക കരുത്തുള്ള വസ്തു കൊണ്ടായിരിക്കണം കേബിൾ നിർമ്മിക്കേണ്ടത്. എന്നാൽ ഇത്തരത്തിലുള്ള ഒരു വസ്തു ഇതുവരെ ലഭ്യമായിട്ടില്ല. അതിനാൽ തന്നെ സ്പേസ് എലിവേറ്റർ ഇതുവരെ നിർമ്മിക്കപ്പെട്ടിട്ടില്ല.
എന്നാൽ അടുത്തിടെ കണ്ടെത്തിയ കാർബൺ നാനോട്യൂബുകൾ, ബോറോൺ നൈട്രൈഡ് നാനോട്യൂബുകൾ എന്നിവ ഉപയോഗിച്ച് സ്പേസ് എലിവേറ്റർ കേബിൾ നിർമ്മിക്കുവാൻ സാധിക്കുമെന്ന് ശാസ്ത്രജ്ഞർ വിശ്വസിക്കുന്നു.[2] കാർബൺ നാനോട്യൂബുകളെപ്പോലെ ബലമുള്ള ഡയമണ്ട് നാനോത്രെഡ് 2014-ൽ കണ്ടെത്തിയിരുന്നു.[3] ഭൂമിയിൽ സ്പേസ് എലവേറ്റർ നിർമ്മിക്കുന്നതിൽ ഈ കണ്ടുപിടിത്തം നിർണ്ണായകമായേക്കാം. ഭൂമിയെക്കാൾ ഗുരുത്വാകർഷണം കുറഞ്ഞ ചന്ദ്രനിലും ചൊവ്വയിലും സ്പേസ് എലിവേറ്റർ നിർമ്മിക്കുവാൻ സാധിക്കും. ഇവയിൽ ഉപയോഗിക്കുവാനുള്ള കേബിൾ നിർമ്മിക്കുവാൻ കെവ്ലർ (Kevlar) പോലുള്ള പദാർത്ഥങ്ങൾ മതിയാകും. [4]
1895-ൽ റഷ്യൻ ശാസ്ത്രജ്ഞനായ കോൺസ്റ്റാന്റിൻ സിയോൾക്കോവ്സ്കിയാണ് സ്പേസ് എലവേറ്റർ എന്ന ആശയം ആദ്യമായി അവതരിപ്പിച്ചത്. [5] ഭൗമോപരിതലം മുതൽ ഭൂസ്ഥിര ഭ്രമണപഥം വരെ എത്തുന്ന വിധത്തിലുള്ള ഒരു ഗോപുരമാണ് അദ്ദേഹത്തിൻറെ സങ്കൽപ്പത്തിലുണ്ടായിരുന്നത്.
സ്പേസ് എലവേറ്റർ എന്ന ആശയത്തെക്കുറിച്ച് ബൈബിളിലെ ഉൽപ്പത്തി പുസ്തകത്തിൽ ചെറിയ സൂചന നൽകുന്നുണ്ട്. പ്രളയത്തിനു ശേഷം ശിനാർ ദേശത്തെ ജനങ്ങൾ പുതിയ ഒരു നഗരം നിർമ്മിക്കുവാൻ തീരുമാനിച്ചു. നഗരത്തോടൊപ്പം ഒരു ഗോപുരവും നിർമ്മിക്കണമെന്ന് അവർ ആഗ്രഹിച്ചിരുന്നു. ആകാശം വരെയെത്തുന്ന വിധത്തിൽ നിർമ്മിക്കുവാനുദ്ദേശിച്ചിരുന്ന ആ ഗോപുരത്തെ ബാബേൽ ഗോപുരം എന്നുവിളിക്കുന്നു. ആകാശം വരെ എത്തുന്ന വിധത്തിലുള്ള കെട്ടിടങ്ങളുടെ നിർമ്മാണത്തെക്കുറിച്ച് നൂറ്റാണ്ടുകൾക്കുമുമ്പു തന്നെ മനുഷ്യർ ചിന്തിച്ചിരുന്നുവെന്ന സൂചനയാണിതു നൽകുന്നത്.
പാരിസിലെ ഈഫൽ ടവറിൽ നിന്നും പ്രചോദനമുൾക്കൊണ്ടാണ് റഷ്യൻ ശാസ്ത്രജ്ഞനായ കോൺസ്റ്റാന്റിൻ സിയോൾക്കോവ്സ്കി 1895-ൽ സ്പേസ് എലവേറ്റർ എന്ന ആശയം ആദ്യമായി അവതരിപ്പിച്ചത്.[5] ഭൗമോപരിതലത്തിൽ നിന്നും 35,790 കിലോമീറ്റർ വരെ ഉയരത്തിൽ ഭൂസ്ഥിര ഭ്രമണപഥം (Geo Stationary Orbit) വരെ എത്തുന്ന വിധത്തിൽ ഈഫൽ ടവർ പോലെ ഒരു ഗോപുരമാണ് അദ്ദേഹം വിഭാവന ചെയ്തത്. [6] ഭൂസ്ഥിര ഉപഗ്രഹങ്ങൾ ഭൂമിയെ വലംവയ്ക്കുന്നതു പോലെ ഈ ഗോപുരത്തിൻറെ മുകൾഭാഗവും കറങ്ങിക്കൊണ്ടിരിക്കണമെന്നുംഅദ്ദേഹം നിർദ്ദേശിച്ചു. ഗോപുരത്തിൻറെ മുകളിലെത്തുന്ന വസ്തുക്കളെ ഭൂസ്ഥിര ഭ്രമണപഥത്തിലേക്കു വിക്ഷേപിക്കുവാൻ തക്ക പ്രവേഗം ഇതുമൂലം ലഭിക്കുന്നു. ഗോപുരത്തിൻറെ ഭാരം താങ്ങിനിർത്തുവാനുള്ള സജ്ജീകരണങ്ങൾ ഭൂമിക്കടിയിലും ചെയ്യേണ്ടിവരും. സാധാരണ കെട്ടിടങ്ങളെല്ലാം നിർമ്മിക്കുന്ന ഈ രീതിക്കു കംപ്രെഷൻ ഘടന (Compression Structure) എന്നാണു പറയുക. ആധുനിക കാലത്തെ ആശയങ്ങൾ സിയോൾക്കോവ്സ്കിയുടെ ആശയത്തിൽ നിന്നും അല്പം വ്യത്യസ്തമാണ്.
കംപ്രെഷൻ ഘടനയിൽ സ്പേസ് എലിവേറ്റർ നിർമ്മിക്കുന്നത് എളുപ്പമല്ല. കാരണം, അത്രയും ഉയരമുള്ള കെട്ടിടത്തിന് സ്വന്തം ഭാരം താങ്ങുവാൻ സാധിക്കില്ല. അത്രയും കംപ്രസീവ് ശക്തിയുള്ള വസ്തുക്കൾ നിലവിലില്ല. [7]
1959-ൽ മറ്റൊരു റഷ്യൻ ശാസ്ത്രജ്ഞൻ യൂറി എൻ. അർട്ട്സുട്ടനോവ് (Yuri N. Artsutanov) കുറച്ചുകൂടി പ്രായോഗികമായ നിർദ്ദേശം അവതരിപ്പിച്ചു. ഒരു ഭൂസ്ഥിര ഉപഗ്രഹത്തിൽ കേബിൾ ഘടിപ്പിച്ച ശേഷം ഭൂമിയിലേക്കു കേബിളിനെ വലിച്ചുനീട്ടുന്ന രീതിയാണ് അദ്ദേഹം നിർദ്ദേശിച്ചത്. കേബിളിന്റെ ഭൂമിയിലേക്കു നീളുന്ന അഗ്രത്തെ ഭാരമുള്ള ഒരു വസ്തുവിൽ ഉറപ്പിച്ചാൽ കേബിളിനെ നേരെ നിർത്താൻ സാധിക്കും. ഭൗമോപരിതലത്തിൽ കേബിളിന്റെ കനംകുറച്ചും ബഹിരാകാശത്തു കനം കൂട്ടിയും നിർമ്മിക്കുവാനും അദ്ദേഹം നിർദ്ദേശിച്ചു. ആർട്ട്സുട്ട്നോവിന്റെ ഈ ആശയം 1960-ൽ Komosomolskya Pravda എന്ന റഷ്യൻ പ്രസിദ്ധീകരണത്തിലും വന്നിരുന്നു. [8]
1975-ൽ അമേരിക്കൻ ശാസ്ത്രജ്ഞനായ ജെറോം പിയേഴ്സൺ ഇതേ ആശയം വീണ്ടും അവതരിപ്പിച്ചു. യൂണിറ്റ് ഛേദതല വിസ്തീർണ്ണത്തിൽ കേബിളിന്റെ ഭാരം കുറയ്ക്കുന്ന വിധത്തിൽ ഭൗമോപരിതലത്തിൽ കേബിളിന്റെ കനം കുറച്ചും ഭൂസ്ഥിര ഭ്രമണപഥത്തിൽ കനം കൂട്ടിയും നിർമ്മിക്കുവാൻ തന്നെയാണ് ഇദ്ദേഹവും നിർദ്ദേശിച്ചത്. എലവേറ്ററിന്റെ അടിവശം നിർമ്മിച്ചതിനുശേഷം കേബിളിനെ 1,44,000 കിലോമീറ്റർ മുകളിലേക്കുയർത്തി ഭാരമുള്ള ഒരു വസ്തുവിൽ (കൗണ്ടർ വെയ്റ്റ്) ഉറപ്പിക്കുവാനായിരുന്നു അദ്ദേഹം പറഞ്ഞത്. ഭൂമിയുടെ ഗുരുത്വാകർഷണ ബലത്തിനും അതിനു വിപരീതമായി കേബിളിൽ അനുഭവപ്പെടുന്ന അഭികേന്ദ്രബലത്തിനും അനുയോജ്യമായ നിർമ്മാണരീതിയാണിത്.
ആർതർ സി. ക്ലാർക്കിന്റെ 1979-ൽ പുറത്തിറങ്ങിയ ദി ഫൗണ്ടെൻസ് ഓഫ് പാരഡൈസ് (The Fountains of Paradise) എന്ന നോവലിൽ സ്പേസ് എലിവേറ്ററുകളുടെ നിർമ്മാണത്തെക്കുറിച്ച് പറഞ്ഞിരുന്നു. ടാപ്രോബെയ്ൻ (Taprobane) എന്ന രാജ്യത്തെ എഞ്ചിനിയർമാർ ഒരു പർവ്വതത്തിനു മുകളിൽ ഒരു സ്പേസ് എലിവേറ്റർ നിർമ്മിക്കുന്ന സന്ദർഭം ഇതിലുണ്ട്. ചാൾസ് ഷെഫീൽഡിന്റെ (Charles Sheffield) ആദ്യ നോവലായ The Web between the Worldsലും പ്രതിപാദ്യ വിഷയം സ്പേസ് എലവേറ്ററുകളായിരുന്നു.
റോബർട്ട് എ. ഹെയ്ൻലെയിൻസിന്റെ 1982-ൽ പുറത്തിറങ്ങിയ ഫ്രൈഡേ എന്ന നോവലിലെ കേന്ദ്ര കഥാപാത്രം തന്റെ ശൂന്യാകാശയാത്രയ്ക്കായി Nairobi Beanstalk എന്ന എലിവേറ്റർ ഉപയോഗിക്കുന്ന കാര്യം പറയുന്നുണ്ട്.
1993-ൽ കിം സ്റ്റാൻലി റോബിൻസണിന്റേതായി പുറത്തിറങ്ങിയ Reo Mars എന്ന നോവലിലെ വിഷയം ചൊവ്വാഗ്രഹത്തിൽ ഒരു സ്പേസ് എലവേറ്റർ നിർമ്മിക്കുന്നതിനെക്കുറിച്ചാണ്. ഡേവിഡ് ജെറോൾഡിന്റെ ജംബിങ് ഓഫ് ദി പ്ലാനെറ്റ്, John Slonczewskiയുടെ ദി ഹൈയ്യെസ്റ്റ് ഫ്രോണ്ടിയർ എന്നീ നോവലുകളിലും സ്പേസ് എലവേറ്ററുകളാണ് വിഷയങ്ങൾ.
1990-കളിലാണ് കാർബൺ നാനോട്യൂബുകൾ കണ്ടെത്തിയത്. നാസയിലെ എഞ്ചിനിയറായ ഡേവിഡ് സ്മിതർമാൻ സ്പേസ് എലവേറ്ററുകളുടെ നിർമ്മാണത്തിനു കാർബൺ നാനോട്യൂബുകൾ ഉപയോഗിക്കാമെന്ന ആശയം അവതരിപ്പിച്ചു. കാർബൺ നാനോട്യൂബ് ഉപയോഗിച്ച് 100,000 കിലോമീറ്റർ നീളവും പേപ്പറിന്റെ കനവുമുള്ള കേബിൾ നിർമ്മിക്കാമെന്നു നിർദ്ദേശിച്ചത് അമേരിക്കൻ ശാസ്ത്രജ്ഞനായ ബ്രാഡ്ലി സി. എഡ്വേർഡ്സ് ആയിരുന്നു. [9] കേബിളിനു വൃത്താകൃതിയെക്കാൾ നല്ലത് റിബണിന്റെ ആകൃതിയാണെന്നായിരുന്നു അദ്ദേഹത്തിൻറെ അഭിപ്രായം. ക്ലൈമ്പർ പോലുള്ള ഉപകരണങ്ങൾക്കു സഞ്ചരിക്കുവാൻ അത്തരമൊരു ആകൃതിയാണു നല്ലത്.[2] [10][11][12]
1996-ൽ ഐസക്, വൈൻ, ബ്രാഡ്നെർ, ബാക്കസ് എന്നീ അമേരിക്കൻ എഞ്ചിനിയർമാർ ഈ ആശയം വീണ്ടും കണ്ടെത്തുകയും സ്കൈ ഹൂക്ക് (Sky Hook) എന്ന പേര് നൽകി സയൻസ് എന്ന ജേർണലിൽ പ്രസിദ്ധീകരിക്കുകയും ചെയ്തു. [13] കനം കൂട്ടുകയോ കുറയ്ക്കുകയോ ചെയ്യാതെ കേബിൾ നിർമ്മിക്കുവാൻ അനുയോജ്യമായ വസ്തു കണ്ടെത്തുവാൻ അവർ ശ്രമിച്ചിരുന്നു. അന്ന് നിലവിലുണ്ടായിരുന്ന കരുത്തുറ്റ വസ്തുക്കളായ വജ്രം, ഗ്രാഫൈറ്റ്, ക്വാർട്ട്സ് തുടങ്ങിയവയേക്കാൾ ഇരട്ടി ശക്തിയുള്ള പദാർത്ഥം കൊണ്ടുമാത്രമേ കേബിൾ നിർമ്മാണം സാദ്ധ്യമാവുകയുള്ളൂ എന്ന് അവർ വിശ്വസിച്ചിരുന്നു്.[13]
സ്പേസ് എലവേറ്ററുകളുടെ നിർമ്മാണം വേഗത്തിലാക്കുവാനായി അൻസാരി എക്സ് പ്രൈസ് (Ansari X Prize) പോലുള്ള മത്സരങ്ങൾ സംഘടിപ്പിക്കപ്പെട്ടു.[14][15] 2005 മാർച്ചിൽ നാസയും അത്തരത്തിലുള്ള മത്സരങ്ങൾ സംഘടിപ്പിച്ചു. നാലുലക്ഷം ഡോളറായിരുന്നു സമ്മാനത്തുക. [16][17]
ന്യൂ ജെഴ്സിയിൽ കാർബൺ നാനോട്യൂബുകൾ നിർമ്മിക്കുവാനുള്ള ഒരു പ്ലാന്റ് തുടങ്ങുമെന്ന് ലിഫ്റ്റ് പോർട്ട് ഗ്രൂപ്പ് 2005-ൽ പ്രഖ്യാപിച്ചു. ഒരു ലക്ഷം കിലോമീറ്റർ നീളമുള്ള സ്പേസ് എലിവേറ്റർ നിർമ്മിക്കുവാൻ ആവശ്യമുള്ള കാർബൺ നാനോട്യൂബുകൾ ഘട്ടം ഘട്ടമായി നിർമ്മിക്കുന്നതിലൂടെ കൂടുതൽ ഗവേഷണങ്ങൾ നടത്താമെന്ന് അവർ വിശ്വസിച്ചു.[18] 2010 ആകുമ്പോഴേക്കും ഒരു സ്പേസ് എലിവേറ്റർ നിർമ്മിക്കുമെന്നും അവർ പ്രഖ്യാപിച്ചിരുന്നു.
എലവേറ്റർ നിർമ്മാണത്തിനു ഒരു ടൈംടേബിൾ ഉണ്ടാക്കുവാനായി 2008 നവംബറിൽ ജപ്പാൻ ഒരു അന്താരാഷ്ട്ര സമ്മേളനം നടത്തി. [19] ഡോ. ബ്രാഡ് എഡ്വേർഡ്സും ഫിലിപ്പ് റേഗനും ചേർന്ന് എഴുതിയ ലീവിംഗ് ദി പ്ലാനെറ്റ് ബൈ സ്പേസ് എലവേറ്റർ എന്ന പുസ്തകം 2008-ൽ ജാപ്പനീസ് ഭാഷയിൽ പ്രസിദ്ധീകരിക്കപ്പെടുകയും സ്പേസ് എലവേറ്റർ വിഷയം വീണ്ടും ശ്രദ്ധനേടുകയും ചെയ്തു. [20] 38 വർഷങ്ങൾക്കുള്ളിൽ ഒരു സ്പേസ് എലവേറ്റർ നിർമ്മിക്കുമെന്ന് 2012-ൽ ജപ്പാൻ പ്രഖ്യാപിച്ചു. [21]
പല തരത്തിലുള്ള സ്പേസ് എലവേറ്ററുകളുണ്ട്. ഭൂരിഭാഗം എലവേറ്ററുകളിലും ഒരു ബേസ് സ്റ്റേഷൻ, കേബിൾ, ക്ലൈമ്പർ, കൗണ്ടർ വെയ്റ്റ് എന്നിവയുണ്ടായിരിക്കും.
ഒരു സ്പേസ് എലവേറ്ററിലെ ഏറ്റവും പ്രധാനപ്പെട്ട ഭാഗമാണ് കേബിൾ. ഗ്രഹോപരിതലത്തെയും ബഹിരാകാശത്തെയും ബന്ധിപ്പിക്കുകയാണ് കേബിൾ ചെയ്യുന്നത്. സ്വന്തം ഭാരവും ക്ലൈമ്പറുകളുടെ ഭാരവും താങ്ങുവാനുള്ള കരുത്ത് അവയ്ക്കുണ്ടായിരിക്കണം.
ഭൂമിയെ അടിസ്ഥാനമാക്കി നിർമ്മിക്കുന്ന സ്പേസ് എലവേറ്ററിലെ കേബിൾ ഭൂമദ്ധ്യരേഖ മുതൽ 35,786 കിലോമീറ്റർ ഉയരത്തിൽ ഭൂസ്ഥിര ഭ്രമണപഥം വരെ എത്തുന്നതായിരിക്കും. അതിനാൽ സ്വന്തം ഭാരം മൂലം കേബിളിൽ അനുഭവപ്പെടുന്ന ബലം വളരെ കൂടുതലായിരിക്കും. അതിനാൽ ഈ ബലത്തിനെ അതിജീവിക്കുവാൻ കഴിയുന്ന വസ്തു കൊണ്ടായിരിക്കണം കേബിൾ നിർമ്മിക്കേണ്ടത്. കാർബൺ നാനോട്യൂബുകൾ പോലുള്ള വസ്തുക്കളാണ് ഇത്തരം കേബിളുകൾ നിർമ്മിക്കാനുപയോഗിക്കേണ്ടത്. ഭൗമോപരിതലത്തിൽ കേബിളിന്റെ കനം കുറച്ചും ഉയരത്തിലുള്ള ഭാഗം കനം കൂട്ടിയും നിർമ്മിക്കുകയാണെങ്കിൽ സ്വന്തം ഭാരത്തെ അതിജീവിക്കുവാൻ കേബിളിനു സാധിക്കും. കേബിളിൽ അനുഭവപ്പെടുന്ന വലിവുബലം (യൂണിറ്റ് ചേദതല വിസ്തീർണ്ണത്തിൽ അനുഭവപ്പെടുന്ന ബലം) സ്ഥിരമായിരിക്കുവാനും ഇത് സഹായിക്കുന്നു.[22] [23]
സ്പേസ് എലവേറ്ററിന്റെ കേബിളിനെ ഭൗമോപരിതലത്തിലോ സമുദ്രോപരിതലത്തിലോ ഉറപ്പിച്ചു നിർത്തുന്ന ഭാഗത്തെ ബേസ് സ്റ്റേഷൻ എന്നുപറയുന്നു.
കരയിൽ ഉറപ്പിച്ചുനിർത്തുന്ന ബേസ് സ്റ്റേഷനുകൾ ലളിതവും ചെലവു കുറഞ്ഞവയുമാണ്. പർവ്വതങ്ങൾ പോലുള്ള ഉയർന്ന സ്ഥലങ്ങളിൽ സ്പേസ് എലിവേറ്റർ നിർമ്മാണത്തിനു ഇത്തരം സ്റ്റേഷനുകളാണ് അനുയോജ്യം.[2]
സമുദ്രാപരിതലത്തിലുള്ള പ്രതലത്തിൽ നിർമ്മിക്കുന്ന ബേസ് സ്റ്റേഷനുകൾ സ്ഥാനം മാറ്റാൻ (mobile base stations) കഴിയുന്നവയാണ്. കൊടുങ്കാറ്റ്, പ്രകൃതിക്ഷോഭം എന്നിവയുണ്ടായാൽ ഇത്തരം ബേസ് സ്റ്റേഷനുകളെ സുരക്ഷിത സ്ഥാനത്തേക്ക് മാറ്റുവാൻ കഴിയും.[2]
കേബിളിന്റെ മുകളിലേക്കുള്ള അഗ്രം ബഹിരാകാശത്ത് ഒരു ഛിന്നഗ്രഹത്തോളം ഭാരമുള്ള വസ്തുവിൽ ബന്ധിപ്പിക്കുന്നു. ഇതിനെയാണ് കൗണ്ടർ വെയ്റ്റ് എന്നുപറയുന്നത്.
ഭൂസ്ഥിര ഭ്രമണപഥത്തിൽ സ്ഥാപിച്ചിട്ടുള്ള സ്പേസ് സ്റ്റേഷൻ , സ്പേസ് ഡോക്ക് അല്ലെങ്കിൽ ഒരു സ്പേസ് പോർട്ട് എന്നിവയെ കൗണ്ടർ വെയ്റ്റായി ഉപയോഗിക്കുവാൻ സാധിക്കും.
കേബിളിന്റെ നീളം കൂട്ടിയാൽ അതുതന്നെ കൗണ്ടർ വെയ്റ്റായി പ്രവർത്തിക്കും. ഈ രീതി വളരെ ലളിതമാണെങ്കിലും വലിയ അളവിൽ കേബിൾ ഉൽപാദിപ്പിക്കേണ്ടി വരുന്നതിനാൽ ചെലവ് കൂടുതലാണ്. [24]
സ്പേസ് എലവേറ്ററിലെ കേബിളിലൂടെ വസ്തുക്കൾ കൊണ്ടുപോകുന്നതിനുള്ള വാഹനങ്ങളാണ് ക്ലൈമ്പറുകൾ (Climbers). ഭാരമുള്ള വസ്തുക്കൾ കൊണ്ടുപോകേണ്ടതിനാൽ ക്ലൈമ്പറിനു കൂടുതൽ പവർ ഉണ്ടായിരിക്കേണ്ടത് അത്യാവശ്യമാണ്.
ചന്ദ്രൻ, ചൊവ്വ, ഛിന്നഗ്രഹങ്ങൾ എന്നിവയിൽ സ്പേസ് എലവേറ്റർ നിർമ്മിക്കുവാൻ ഭൂമിയിലെതുപോലെ പ്രതിസന്ധികൾ കുറവാണ്.
ഭൂമിയുടെ ഗുരുത്വാകർഷണബലത്തിന്റെ 38% മാത്രമാണ് ചൊവ്വയുടേത്. മാത്രമല്ല ചൊവ്വയുടെ ഭ്രമണ സമയം ഭൂമിയുടേതിന് ഏകദേശം തുല്യമാണ്.അതിനാൽ തന്നെ ഉപരിതലവും ഭ്രമണപഥവും തമ്മിലുള്ള അകലം കുറവായിരിക്കും. അങ്ങനെയെങ്കിൽ അവിടെ ചെറിയ എലവേറ്ററുകൾ നിർമ്മിച്ചാൽ മതി. ചന്ദ്രനിലും ഇത്തരം ചെറിയ എലവേറ്ററുകൾ നിർമ്മിക്കാം. ഭൂമിയിൽ ഇപ്പോൾ ലഭ്യമായ വസ്തുക്കൾ കൊണ്ടുതന്നെ ഇത് സാദ്ധ്യമാണ്. [26]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.