From Wikipedia, the free encyclopedia
Интегрирање со смена на променливата, во математиката т.е. интегралното сметање еден од основните методи за решавање на интеграли. Ова правило допушта, т.е. ги дава потребните услови под кои, слично како кај лимес на функција, може да се изврши смена на променливата во определен интеграл. Заедно со методот на интегрирање по делови, овој метод е едно од двете најнужни тврдења кои треба да се познаваат при решавањето на интегралите.
Статии поврзани со математичката анализа |
Основна теорема на анализата |
Диференцијално сметање |
Извод од производ |
Интегрално сметање |
Методи на интегрирање |
Интегрирање по делови |
Нека е интервал и нека е дефинирана непрекината функција: и нека е непрекинато-диференцијабилна функција на интервалот . Тогаш важи следново равенство:
Ќе го докажеме тврдењето:
Нека се исполнети условите и нека е примитивна за на , т.е. . Тогаш пак функцијата е примитивна за бидејќи
Тогаш според формилата на Њутн-Лајбниц имаме:
Ќе ја воведеме смената: . Следствено имаме: и за смената на границите: и
Сега „настапува“ смената. Еве што всушност правиме:
односно добиваме:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.