From Wikipedia, the free encyclopedia
При диференцирање на количник на две функции важат построги критериуми околу постоењето на изводот, т.е. мора да бидат задоволени неколку суштински предуслови, пред сѐ функцијата која е во именителот да има вредност различна од нула во точката во која го пресметуваме изводот.
Статии поврзани со математичката анализа |
Основна теорема на анализата |
Диференцијално сметање |
Извод од производ |
Интегрално сметање |
Методи на интегрирање |
Интегрирање по делови |
Формално, тврдењето е следново:
Нека и се реални функции определени на интервалот и диференцијабилни во точка и нека, дополнително, . Тогаш и нивниот количник е диференцијабилен во точката , и при тоа важи:
Ако двете функции се диференцијабилни во секоја точка од интервалот и уште е различна од нула во секоја точка, тогаш формално се бележи:
Нека и се диференцијабилни во точка и . Тогаш:
Тогаш за изводот на количникот имаме:
Шекутковски, Никита Архивирано на 21 декември 2007 г.: Математичка анализа I, Просветно Дело, Скопје, 1996
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.