Активно галактичко јадро
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
Активното галактичко јадро (АГЈ) ― збиено подрачје во средиштето на галаксијата што емитува значителна количина на енергија низ електромагнетниот спектар, со особини што укажуваат дека оваа сјајност не ја прават ѕвездите. Таков вишок, неѕвездени емисии се забележани во радио, микробрановите, инфрацрвените, оптичките, ултравиолетовите, рендгенските и гама-брановите. Галаксијата што е домаќин на АГЈ е нарекувана активна галаксија. Неѕвезденото зрачење од АГЈ е теоретизирано дека е резултат на собирање на материја од супермасивна црна дупка во средиштето на нејзината галаксија домаќин.
Активните галактички јадра се најсветлите постојани извори на електромагнетно зрачење во универзумот и, како такви, може да бидат користени како средство за откривање далечни тела; нивната еволуција како функција на космичкото време, исто така, поставува ограничувања на моделите на космосот.
Набљудуваните особини на АГЈ зависат од неколку својства како што се масата на средишната црна дупка, брзината на гасно насобирање на црната дупка, ориентацијата на насобирачкиот диск, степенот на згаснување на јадрото од прашина и присуството или отсуство на млазови.
Бројни подкласи на АГЈ се дефинирани врз основа на нивните забележани особини; најмоќните АГЈ се класифицирани како квазари. Блазар е АГЈ со млаз насочен кон Земјата, во кој зрачењето од млазот се засилува со релативистичко зрачење.
Remove ads
Историја

Во текот на првата половина на 20 век, фотографските набљудувања на блиските галаксии открија некои карактеристични знаци на емисијата на АГЈ, иако сè уште немало физичко разбирање за природата на појавана на АГЈ. Некои рани набљудувања го вклучиле првото спектроскопско откривање на емисиони линии од јадрата на NGC 1068 и Месје 81 од страна на Едвард Фат (објавено во 1909 година),[1] и откривањето на млазот во Месје 87 од Хебер Кертис (објавено во 1918 година).[2] Понатамошни спектроскопски студии од астрономите, вклучувајќи ги Весто Слифер, Милтон Хумасон и Николас Мејол, забележале присуство на необични емисиони линии во некои јадра на галаксијата.[3][4][5][6] Во 1943 година, Карл Сејферт објавил труд во кој ги опишал набљудувањата на блиските галаксии со светли јадра кои биле извори на невообичаено широки линии на емисија.[7] Галаксиите забележани како дел од оваа студија се NGC 1068, NGC 4151, NGC 3516 и NGC 7469. Активните галаксии како овие се познати како Сејфертови галаксии во чест на пионерската работа на Сејферт.
Развојот на радиоастрономијата бил главен катализатор за разбирање на АГЈ. Некои од најраните откриени радиоизвори се блиските активни елиптични галаксии како што се Месје 87 и Кентаур А.[8] Друг радиоизвор, Лебед А, бил идентификуван од Валтер Баде и Рудолф Минковски како плимна искривена галаксија со необичен спектар на емисиона линија, со рецесиска брзина од 16.700 километри во секунда.[9] Третиот кембрички каталог на радиоизвори довел до понатамошен напредок во откривањето на нови радиоизвори, како и идентификување на изворите на видлива светлина поврзани со радиоемисијата. Во фотографските снимки, некои од овие тела биле речиси точки или квазиѕвездени по изглед, и биле класифицирани како квазиѕвездени радиоизвори (подоцна скратено како „квазари“).
Советско-ерменскиот астрофизичар Виктор Амбарцумјан ги претставил активните галактички јадра во раните 1950-ти.[10] На Солвејската конференција за физика во 1958 година, Амбарцумјан претставил извештај во кој е тврдено дека „експлозиите во галактичките јадра предизвикуваат исфрлање на големи количини на маса. За да се случат овие експлозии, галактичките јадра мора да содржат тела со огромна маса и непозната природа. Од оваа точка па напред, активните галактички јадра станале клучен составен дел во теориите за галактичката еволуција“.[11] Неговата идеја првично била прифатена скептично.[12][13]
Голем пробив било мерењето на црвеното поместување на квазарот 3C 273 од Мартен Шмит, објавено во 1963 година.[14] Шмит забележал дека ако ова тело е вонгалактичко (надвор од Млечниот Пат, на космолошко растојание), тогаш неговото големо црвено поместување од 0,158 имплицирало дека тоа е јадреното подрачје на галаксијата околу 100 пати помоќно од другите радио галаксии кои биле идентификувани. Набргу потоа, оптичките спектри биле искористени за мерење на црвените поместувања на се поголем број квазари вклучувајќи го и 3C 48, уште подалеку при црвено поместување на 0,37.[15]
Огромната осветленост на овие квазари, како и нивните необични спектрални својства, покажале дека нивниот извор на енергија не може да бидат обични ѕвезди. Насобирањето на гас на супермасивна црна дупка била предложена како извор на моќта на квазарите во трудовите од Едвин Салпетер и Јаков Зелдович во 1964 година.[16] Во 1969 година, Доналд Линден-Бел предложил блиските галаксии да содржат супермасивни црни дупки во нивните средишта како реликти на „мртвите“ квазари, и дека насобирањето на црните дупки е извор на енергија за неѕвездената емисија во блиските Сејфертови галаксии.[17] Во 1960-тите и 1970-тите, раните набљудувања на рендгенската астрономија покажале дека Сејфертовите галаксии и квазари на се моќни извори на емисија на рендгенски зраци, кои потекнуваат од внатрешните области на насобирачките дискови на црните дупки.
Денес, АГЈ е главна тема на астрофизичко истражување, и набљудувачки и теоретски. Истражувањето на активните галактички јадра опфаќа набљудувачки истражувања за пронаоѓање на АГЈ во широк опсег на сјајност и црвено поместување, испитување на космичката еволуција и раст на црните дупки, студии на физиката на насобирањето на црните дупки и емисијата на електромагнетно зрачење од АГЈ, испитување на својствата на млазовите и одливот на материјата од АГЈ и влијанието на насобирањето на црните дупки и активноста на квазарите врз еволуцијата на галаксиите.
Remove ads
Модели
Од доцните 1960-ти, тврдено е[18] дека едно АГЈ мора да се напојува со насобирање на маса на масивни црни дупки (106 до 1010 пати поголема од сончевата маса). Активните галактички јадра се и збиени и постојано крајно сјајни. Насобирањето потенцијално може да даде многу ефикасно претворање на потенцијалната и кинетичката енергија во зрачење, а масивната црна дупка има висока Едингтонова сјајност, и како резултат на тоа, може да ја обезбеди забележаната висока трајна сјајност. Сега е верувано дека постојат супермасивни црни дупки во средиштата на повеќето, ако не и на сите масивни галаксии, бидејќи масата на црната дупка добро корелира со брзината на расеаност на галактичкото испакнување (релација М-сигма) или со сјајноста на испакнатоста.[19] Така, особините слични на АГЈ се очекувани секогаш кога снабдувањето со материјал за насобирање доаѓа во сферата на влијание на средишната црна дупка.
Насобирачки диск
Во стандардниот модел на актино галактичко јадро, студениот материјал блиску до црна дупка образува насобирачки диск. Дисипативните постапки во насобирачките диск ја пренесуваат материјата навнатре, а аголниот момент нанадвор, додека предизвикуваат загревање на насобирачкиот диск. Очекуваниот спектар на насобирачки диск достигнува врв во оптичко-ултравиолетовиот бран; Покрај тоа, корона од врел материјал настанува над насобирачкиот диск и може инверзно-Комптонови расејувачки фотони до енергии на рендгенски зраци. Зрачењето од насобирачки диск го возбудува ладниот атомски материјал блиску до црната дупка и тоа пак зрачи на одредени линии на емисија. Голем дел од зрачењето на АГЈ може да биде прикриено со меѓуѕвезден гас и прашина блиску до насобирачкиот диск, но (во стабилна состојба) ова ќе биде повторно зрачено на некој друг брановиден опсег, најверојатно инфрацрвениот.
Релативистички млазови

Некои насобирачки дискови произведуваат млазови од двојни, силно усогласени и брзи одливи кои излегуваат во спротивни насоки од блиску до дискот. Насоката на исфрлање на млазот се определува или со оската на аголниот моментум на дискот за насобирање или од оската на центрифугирање на црната дупка. Механизмот за производство на млаз и всушност составот на млазот во многу мали размери во моментов не се разбрани поради прениската резолуција на астрономските инструменти. Млазовите ги имаат своите најочигледни набљудувачки ефекти во радио брановидниот опсег, каде што интерферометрија со многу долга основна линија може да биде користена за проучување на синхротронското зрачење што го испуштаат при резолуции од потпарсечни скали. Сепак, тие зрачат во сите бранови појаси од радиобранот до опсегот на гама-зраците преку синхротронот и инверзно-Комптоновата расејувачка постапка, па така млазовите на активните галактички јадра се втор потенцијален извор на секое набљудувано постојано зрачење.
Зрачно неефикасно активно галактичко јадро
Постои класа на „зрачно неефикасни“ решенија на равенките што управуваат со насобирањето. Постојат неколку теории, но најпозната од нив е адвекциско доминираниот насобирачки диск (АДНД).[20] Во овој вид на насобирање, кој е важен за стапките на насобирање многу под Едингтоновата граница, насобраната материја не образува тенок диск и следствено не ефикасно ја зрачи енергијата што ја стекнала додека се движела блиску до црната дупка. Зрачно неефикасното насобирање е искористено за да биде објаснето недостатокот на силно зрачење од типот на актично галактичко од масивните црни дупки во средиштата на елиптичните галаксии во јата, каде што во спротивно би можеле да бидат очекувани високи стапки на насобирање и соодветно висока сјајност.[21] Очекувано е дека на зрачно неефикасно актично галактичко јадро му недостасуваат многу од карактеристичните особини на стандардното АГЈ со насобирачки диск.
Remove ads
Забрзување на честички
Активните галактички јадра се кандидатски извор на космички зраци со висока и крајновисока енергија (видете исто така центрифугален механизам на забрзување) .
Набљудувачки особини
Меѓу многуте интересни особини на активните галактички јадра:[22]
- многу висока сјајност, видлива до многу високи црвени поместувања ,
- мали емитирачки региони, милипарсеци во пречник,
- силна еволуција на функциите на сјајност,
- забележлива емисија низ целиот електромагнетен спектар.
Видови активни галаксии
Удобно е да биде поделени активните галактички јадра на две класи, конвенционално наречени радиотивки и радиогласни. Радиогласните тела имаат придонеси за емисија и од млазот(ите) и од лобусите што ги надувуваат млазновите. Овие придонеси за емисија доминираат во сјајноста на активните галактички јадра на радиобранови должини и можеби на некои или на сите други бранови должини. Радиотивките тела се поедноставни бидејќи млазот и секоја емисија поврзана со млазот може да бидат занемарени на сите бранови должини.
Терминологијата на АГЈ често е збунувачка, бидејќи разликите помеѓу различните типови на АГЈ понекогаш ги одразуваат историските разлики во тоа како предметите биле откриени или првично класифицирани, наместо вистински физички разлики.
Радиотивко активно галактичко јадро
- Јадрено подрачје со нискојонизациски оддавни линии (ЈПНЈОЛ). Како што наведува името, овие системи покажуваат само слаби подрачја со јадрена емисија и нема други знаци на емисија на АГЈ. Дискутабилно е[23] дали сите такви системи се вистинити АГЈ (напојувани со насобирање на супермасивна црна дупка). Ако се, тие ја сочинуваат класата со најниска сјајност на радиотивко АГЈ. Некои може да бидат радиотивки аналози на радио галаксиите со ниска возбуда (види подолу).
- Сејфертови галаксии. Овие галаксии биле најраната посебна класа на АГЈ што биле идентификувани Тие покажуваат јадрена постојана емисија со оптички опсег, тесни и повремено широки линии на емисија, повремено силна емисија на јадрени рендгенски зраци, а понекогаш и слаб радиомлаз од мали размери. Првично тие биле поделени на два вида познати како Сејферт 1 и 2: Сејферт 1 покажуваат силни широки линии на емисија додека Сејферт 2 не, а Сејферт 1 имаат поголема веројатност да покажат силна емисија на рендгенски зраци со ниска енергија. Постојат различни облици на елаборација на оваа шема: на пример, Сејферт 1 со релативно тесни широки линии понекогаш се нарекувани Сејферт 1 со тесна линија. Галаксиите домаќини на Сејферт се обично спирални или неправилни галаксии.
- Радиотивки квазари /квазиѕвездни тела. Овие се суштински посветли верзии на Сејферт 1: разликата е произволна и обично е изразувана во смисла на ограничувачка оптичка големина. Квазарите првично биле „квазиѕвездени“ на оптичките слики бидејќи имале оптичка сјајност која била поголема од онаа на нивната галаксија домаќин. Тие секогаш покажуваат силна оптичка постојана емисија, рендгенска континуумска емисија и широки и тесни линии на оптичка емисија. Некои астрономи го користат поимот КЅТ (Квазиѕвездено тело) за оваа класа на АГЈ, резервирајќи „квазар“ за радиогласни тела, додека други зборуваат за радиотивки и радиогласни квазари. Галаксиите домаќини на квазарите можат да бидат спирали, неправилни или елиптични. Постои корелација помеѓу осветленоста на квазарот и масата на неговата галаксија домаќин, со тоа што најсјајните квазари ги населуваат најмасивните галаксии (елиптични).
- „Квазар 2“. По аналогија со Сејферт 2, ова се тела со сјајност налик на квазар, но без силна оптичка јадрена постојана емисија или емисија со широка линија. Тие се ретки во истражувањата, иако се идентификувани голем број можни кандидати за квазари 2.
Радиогласно активно галактичко јадро
Постојат неколку подтипови на радиогласни активни галактички јадра.
- Радиогласните квазари се однесуваат токму како радиотивки квазари со додавање на емисија од млаз. Така тие покажуваат силна оптичка постојана емисија, широки и тесни линии на емисија и силна емисија на рендгенски зраци, заедно со јадрена и често продолжена радиоемисија.
- Класите „блазари“ (тела од типот на BL Гуштер и квазар од типот на OVV) се разликуваат по брзо променлива, поларизирана оптичка, радио и рендгенска емисија. Телата од типот на BL Гуштер не покажуваат линии на оптичка емисија, широки или тесни, така што нивните црвени поместувања може да бидат утврдени само од особините во спектрите на нивните галаксии домаќини. Особините на линијата за емисија може да бидат суштински отсутни или едноставно преплавени од дополнителниот променлив составен дел. Во вториот случај, линиите за емисија може да станат видливи кога променливиот составен дел е на ниско ниво.[24] Квазарите од типот на OVV се однесуваат повеќе како стандардни радиогласни квазари со додавање на брз променлив составен дел. Во двете класи на извор, се верува дека променливата емисија потекнува од релативистички млаз ориентиран блиску до линијата на видот. Релативистичките ефекти ја засилуваат и сјајноста на млазот и замавот на променливоста.
- Радиогалаксии. Овие тела покажуваат јадрена и проширена радиоемисија. Нивните други својства на АГЈ се хетерогени. Тие нашироко можат да бидат поделени на класи со ниска и висока побудување.[25][26] Телата со ниско побудување не покажуваат силни тесни или широки линии на емисија, а линиите на емисија што ги имаат може да бидат возбудени со различен механизам.[27] Нивната оптичка и јадрена емисија на рендгенски зраци е во согласност со тоа што потекнуваат чисто од млаз.[28][29] Тие може да бидат најдобри тековни кандидати за АГЈ со зрачно неефикасно насобирање. Спротивно на тоа, телата со висока побудување (радио галаксии со тесна линија) имаат спектри на емисиона линија слични на оние на Сејферт 2. Малата класа на широки радио галаксии, кои покажуваат релативно силна јадрена оптичка постојана емисија[30] веројатно вклучува некои тела кои се едноставно радиогласни квазари со ниска сјајност. Галаксиите домаќини на радио галаксиите, без оглед на нивниот тип на емисиона линија, во суштина секогаш се елиптични.
Remove ads
Обединување на видовите на активни галактички јадра

Унифицираните модели предлагаат дека различните класи на набљудување на АГЈ се единствен тип на физичко тело набљудувано под различни услови. Моментално омилените унифицирани модели се „унифицирани модели засновани на правец“ што значи дека тие предлагаат очигледните разлики помеѓу различните типови на тела да настанат едноставно поради нивните различни правци кон набљудувачот.[31][32] Сепак, тие се дебатирани (видете подолу).
Радиотивко обединување
При мала сјајност, телата што треба да бидат обединети се Сејфертовите галаксии. Моделите за обединување предлагаат во Сејферт 1, набљудувачот да има директен поглед на активното јадро. Во Сејферт 2, јадрото е набљудувано преку заматена структура што спречува директен поглед на оптичкиот континуум, широкиот регион или (меката) емисија на рендгенски зраци. Клучниот увид на моделите на насобирање зависни од ориентација е дека двата типа на тело можат да бидат исти ако се набљудувани само одредени агли на линијата на видот. Стандардната слика е на тор од заматен материјал кој го опкружува насобирачкиот диск. Мора да биде доволно голем за да го прикрие подрачјето со широка линија, но не доволно голем за да го прикрие подрачјето со тесна линија, што се гледа во двете класи на тело. Галаксиите Сејферт 2 се гледани низ торусот. Надвор од торусот има материјал што може да распрсне дел од јадрената емисија во нашата видна линија, овозможувајќи да биде виден одреден оптички и рендгенски континуум и, во некои случаи, широки линии на емисија - кои се силно поларизирани, што покажува дека тие имаат се расфрлани и докажуваат дека некои галаксии Сејферт 2 навистина содржат скриени галаксии Сејферт 1. Инфрацрвените набљудувања на јадрата на Сејферт 2, исто така, ја поддржуваат оваа слика.
При повисоки сјајности, квазарите го заземаат местото на Сејферт 1, но, како што веќе е споменато, соодветните „квазари 2“ се недофатливи во моментов. Ако ја немаат компонентата за расејување на галаксиите Сејферт 2, тие би било тешко да бидат забележани освен преку нивната прозрачна тесна линија и тврда емисија на рендгенски зраци.
Радиогласно обединување
Историски гледано, работата за обединување со радиогласна е концентрирана на радиогласни квазари со висока сјајност. Тие можат да се обединат со радио галаксии со тесна линија на начин директно аналоген на обединувањето Сејферт 1/2 (но без многу усложување на компонентата на одбивање: радиогалаксиите со тесна линија не покажуваат јадрен оптички континуум или одбиена рендгенска компонента, иако повремено покажуваат поларизирана широка емисија). Големите радиоструктури на овие објекти обезбедуваат убедлив доказ дека обединетите модели засновани на ориентација навистина се вистинити.[33][34][35] Рендгенски доказ, онаму каде што се достапни, ја поддржуваат унифицираната слика: радиогалаксиите покажуваат докази за затемнување од тор, додека квазарите не, иако мора да се внимава бидејќи радиогласните тела, исто така, имаат мека компонента поврзана со млазот, непримена, и висока резолуција е неопходна за да биде одвоена топлинската емисија од околината на изворите со големи размери на топлиот гас.[36] Под многу мали агли до линијата на видот, доминира релативистичкото зрачење и гледаме блазар од одредена разновидност.
Меѓутоа, во населението на радиогалаксиите целосно доминираат тела со ниска сјајност и ниско побудување. Овие не покажуваат силни линии на јадрени емисии - широки или тесни - тие имаат оптички продолженија за кои се чини дека се целосно поврзани со млазот,[28] и нивната емисија на рендгенски зраци е исто така доследна со тоа што доаѓа чисто од млаз, без силно примена јадрена компонента воопшто.[29] Овие тела не можат да бидат обединети со квазари, иако вклучуваат некои тела со висока сјајност кога е гледана радиоемисијата, бидејќи торот никогаш не може да го скрие подрачјето со тесна линија до потребната мера, и бидејќи инфрацрвените студии покажуваат дека тие немаат скриена јадрена компонента:[37] всушност воопшто нема докази за тор во овие тела. Најверојатно, тие образуваат посебна класа во која е важна само емисијата поврзана со млазот. Под мали агли на линијата на видот, тие ќе се појават како тела од типот на BL Гуштер.[38]
Критики за радиотивкото обединување
Во неодамнешната книжевност за активните галактички јадра, која е предмет на интензивна дебата, се чини дека зголемениот сет на набљудувања е во судир со некои од клучните предвидувања на унифицираниот модел, на пр. дека секој Сејферт 2 има заматено јадро Сејферт 1 (скриено широколиниско подрачје).
Според тоа, не може да биде знаено дали гасот во сите галаксии Сејферт 2 е јонизиран поради фотојонизација од еден, неѕвездено продолжение извор во средината или поради шок-јонизација од, на пример, интензивни, јадрени ѕвездени изблици. Спектрополариметриските студии[39] откриваат дека само 50% од Сејферт 2 покажуваат скриен регион со широка линија и на тој начин ги делат галаксиите Сејферт 2 на две населенија. Се чини дека двете класи на население се разликуваат по нивната сјајност, каде што галаксиите Сејферт 2 без скриено подрачје со широка линија, воглавно се помалку сјајни.[40] Ова наведува дека отсуството на широколиниско подрачје е поврзано со нискиот Едингтонов сооднос, а не со затемнување.
Факторот на покривање на торот може да игра важна улога. Некои модели на тор[41][42] предвидуваат како галаксиите Сејферт1 и Сејферт 2 можат да добијат различни фактори на покривање од зависноста од сјајноста и стапката на насобирање на факторот на покривање на торот, нешто што е поддржано од студиите на рендгенските зраци на АГЈ.[43] Моделите, исто така, наведуваат зависност од стапката на насобирање на широколиниското подрачје и обезбедуваат природна еволуција од поактивни двигатели во галаксиите Сејферт 1 до повеќе „мртви“ галаксии Сејферт 2[44] и можат да го објаснат набљудуваниот распад на унифицираниот модел на ниски сјајности[45] и еволуцијата на широколиниското подрајче.[46]
Додека студиите за еден АГЈ покажуваат важни отстапувања од очекувањата на унифицираниот модел, резултатите од статистичките тестови биле спротивставувачки. Најважниот недостаток на статистичките тестови со директни споредби на статистичките примероци на галаксиите Сејферт 1 и Сејферт 2 е воведувањето на предрасуди за одбирање поради анизотропните критериуми за одбирање.[47][48]
Проучувањето на соседните галаксии наместо самите активни галактички јадра[49][50][51] прво предложило дека бројот на соседи е поголем за галаксиите Сејферт 2 отколку за галаксиите Сејферт 1, во спротивност со унифицираниот модел. Денес, откако ги надминавме претходните ограничувања на малите големини на примерокот и анизотропната селекција, студиите на соседите од стотици до илјадници активни галактички јадра[52] покажале дека соседите на галаксиите Сејферт 2 се суштински поправливи и повеќе настатуваат ѕвезди од галаксиите Сејферт 1 и врската помеѓу типот на АГЈ, морфологија на галаксијата домаќин и историја на судири. Згора на тоа, студиите за аголно правање јата[53] на двата типа на АГЈ потврдуваат дека тие живеат во различни средини и покажуваат дека живеат во ореоли со темна материја со различни маси. Студиите за животната средина на АГЈ се во согласност со моделите за обединување засновани на еволуција[54] каде што галаксиите Сејферт 2 се преобразувани во галаксии Сејферт 1 за време на спојувањето, поддржувајќи ги претходните модели на активирање на јадрата на галаксиите Сејферт 1, засновано на спојување.
Додека контроверзноста за исправноста на секое поединечно истражување сè уште преовладува, сите тие се согласуваат дека наједноставните модели на обединување на АГЈ засновани на агол на гледање се нецелосни. Се чини дека Сејферт-1 и Сејферт-2 се разликуваат во образувањето на ѕвезди и моќноста на двигателот на АГЈ.[55]
Иако сè уште може да важи дека заматениот Сејферт 1 може да се појави како Сејферт 2, не сите галаксии Сејферт 2 мора да бидат домаќини на заматен Сејферт 1. Разбирање дали се работи за истиот мотор што ги придвижува сите галаксии Сејферт 2, врската со радиогласно АГЈ, механизмите на променливоста на некои АГЈ кои варираат помеѓу двата типа во многу кратки временски размери и поврзувањето на типот АГЈ со малите и опкружувањето од големи размери остануваат важни прашања што треба да бидат вклучени во секој унифициран модел на активни галактички јадра.
Една студија од Свифт/BAT, за активни галактички јадра, објавена во јули 2022 година[56] додава поддршка на „моделот на обединување регулиран со зрачење“ наведен во 2017 година.[57] Во овој модел, релативната стапка на насобирање (наречена „Едингтонов сооднос“) на црната дупка има значително влијание врз набљудуваните особини на АЈГ. Се чини дека црните дупки со повисоки Едингтонови соодноси се со поголема веројатност да бидат неприкриени, бидејќи го исчистиле месниот заматен материјал за многу краток временски рок.
Remove ads
Космолошка употреба и еволуција
Долго време, активните галаксии ги држеле сите рекорди за тела со највисоко црвено поместување познати или во оптичкиот или во радиоспектарот, поради нивната висока сјајност. Тие сè уште имаат улога во проучувањето на раниот универзум, но сега е признаено дека едно активно галактичко јадро дава многу пристрасна слика за „вообичаената“ галаксија со високо црвено поместување.
Повеќето светлечки класи на АГЈ (радиогласни и радиотивки) се чини дека биле многу побројни во раниот универзум. Ова наведува дека масивните црни дупки настанале рано и дека условите за настанување на прозрачно АГЈ биле почести во раниот универзум, како што е многу поголема достапност на ладен гас во близина на средиштето на галаксиите отколку сега. Тоа исто така имплицира дека многу тела кои некогаш биле сјајни квазари сега се многу помалку светлечки или целосно мирни. Еволуцијата на населението на активни галактички јадра со ниска сјајност е многу помалку добро разбрана поради тешкотијата да бидат набљудувани овие тела при високи црвени поместувања.
Remove ads
Поврзано
- Однос M–сигма
- Квазар
- Радиогалаксија
- Релативистички млаз
- Супермасивна црна дупка
- Одекнувачко картирање
Наводи
Надворешни врски
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads