From Wikipedia, the free encyclopedia
ಒಂದು ಧಾತುವಿನಿಂದ ತನ್ನಷ್ಟಕ್ಕೆ ತಾನೇ ವಿಕಿರಣಗಳು ಉತ್ಸರ್ಜನೆಯಾಗುವ ಘಟನೆಯನ್ನು ವಿಕಿರಣ ಪಟುತ್ವ ಎನ್ನುತ್ತಾರೆ. ಯಾವ ವಸ್ತುಗಳು ವಿಕಿರಣಗಳನ್ನು ಉತ್ಸರ್ಜಿಸುತ್ತವೆಯೋ ಅವುಗಳನ್ನು ಸ್ವಾಭಾವಿಕ ವಿಕಿರಣಶೀಲ ವಸ್ತುಗಳು ಎನ್ನುತ್ತೇವೆ.[1] ಈ ರೀತಿ ಉತ್ಸರ್ಜಿಸಲ್ಪಟ್ಟ ಕಿರಣಗಳನ್ನು ಬೆಕ್ವೆರೆಲ್ ಕಿರಣಗಳು ಎನ್ನುತ್ತೇವೆ.
೧೮೯೬ನೇ ಇಸವಿಯಲ್ಲಿ ಹೆನ್ರಿ ಬೆಕ್ವೆರೆಲ್ ಎಂಬ ಭೌತಶಾಸ್ತ್ರಜ್ಞನು ಆಕಸ್ಮಿಕವಾಗಿ ವಿಕಿರಣ ಪಟುತ್ವವನ್ನು ಕಂಡುಹಿಡಿದನು.
ಒಂದು ದಿನ ಈತ ಛಾಯಾಚಿತ್ರ ಫಲಕದ ಮೇಲೆ ಯುರೇನಿಯಂ ಲವಣವನ್ನು ಇಟ್ಟು ಕಪ್ಪು ಕಾಗದದಿಂದ ಸುತ್ತಿ ಕತ್ತಲೆಯ ಕೋಣೆಯಲ್ಲಿರಿಸಿದ್ದ. ಛಾಯಾ ಚಿತ್ರ ಫಲಕವನ್ನು ವರ್ಧಿಸಿದ ಬೆಳಕಿನ ದೆಸೆಯಿಂದ ಫಲಕವು ಹಾಳಾಗಿರುವುದು ತಿಳಿದು ಅವನಿಗೆ ಅಚ್ಚರಿಯಾಯಿತು. ಅದೇ ಪ್ರಯೋಗವನ್ನು ಬೇರೆ ಬೇರೆ ಯುರೇನಿಯಂ ಲವಣದಿಂದ ಪುನರಾವರ್ತಿಸಿದಾಗಲೂ ಅದೇ ಫಲಿತಾಂಶವು ದೊರೆಯಿತು. ಆ ಕತ್ತಲೆಯ ಕೋಣೆಗೆ ಬೆಳಕು ಪ್ರವೇಶಿಸಲು ಸಾಧ್ಯವಿಲ್ಲದುದರಿಂದ, ಯುರೇನಿಯಂ ಕಣ್ಣಿಗೆ ಕಾಣದ ಹಾಗು ಛಾಯಾ ಫಲಕಗಳನ್ನು ಹಾಳುಮಾಡುವ ವಿಕಿರಣಗಳನ್ನು ಹೊರಸೂಸುತ್ತಿದೆ ಎಂದು ತೀರ್ಮಾನಿಸಿದನು.[2]
ಹೆನ್ರಿ ಬೆಕ್ವೆರೆಲ್ನ ಕಠಿಣ ಶ್ರಮಕ್ಕೆ ಗೌರವವಾಗಿ ಅವನಿಗೆ ನೊಬೆಲ್ ಪುರಸ್ಕಾರ ನೀಡಲಾಯಿತು. ಅನಂತರ ಮೇರಿ ಕ್ಯುರಿ ಮತ್ತು ಆಕೆಯ ಪತಿ ಪಿಯರಿ ಕ್ಯುರಿ ರೇಡಿಯಂ ಧಾತುವಿಗೆ ಹೆಚ್ಚು ವಿಕಿರಣ ಪಟುತ್ವವಿದೆ ಎಂಬಂಶವನ್ನು ಸಾಬೀತು ಪಡಿಸಿದರು.[3][4][5][6][7]
ತೋರಿಯಮ್ನ ವಿಕಿರಣಪಟುತ್ವವನ್ನು ಮೇರಿ ಕ್ಯೂರಿ (1899), ವಿಕಿರಣಪಟು ಧಾತು ಆಕ್ಟೀನಿಯಮನ್ನು (1899) ಫ಼್ರೆಂಚ್ ರಸಾಯನವಿಜ್ಞಾನಿ ಆಂಡ್ರೆ ಲೂಯಿಸ್ ಡ್ಹಭೈರ್ನ್ (1874-1949), ಅದೇ ವರ್ಷ ಅನಿಲ ರೇಡಾನನ್ನು ಬ್ರಿಟಿಷ್ ಭೌತವಿಜ್ಞಾನಿ ಅರ್ನೆಸ್ಟ್ ರುದರ್ಫ಼ರ್ಡ್ (1871-1937) ಮತ್ತು ರಸಾಯನವಿಜ್ಞಾನಿ ಫ಼್ರೆಡ್ರಿಕ್ ಸಾಡಿ (1877-1956) ಆವಿಷ್ಕರಿಸಿದರು. 1 ಗ್ರಾಮ್ ರೇಡಿಯಮ್ ಪ್ರತಿ ಗಂಟೆಗೆ 420 ಜೂಲ್ನಂತೆ ಅನೇಕ ವರ್ಷಗಳ ಕಾಲ ಉಷ್ಣಶಕ್ತಿ ಒದಗಿಸುತ್ತದೆಂದು ಕ್ಯೂರಿ ದಂಪತಿಗಳು ಸಿದ್ಧಪಡಿಸಿದರು. ಈ ಎಲ್ಲ ಆರಂಭಿಕ ಆವಿಷ್ಕಾರಗಳು ವಿಕಿರಣಪಟುತ್ವ ಕುರಿತು ಸಂಶೋಧನನಿರತರಾಗಲು ವಿಜ್ಞಾನಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸಿದುವು.
ಇಂದು ನಮಗೆ ತಿಳಿದಿರುವಂತೆ ಪರಮಾಣು ಸಂಖ್ಯೆ ೮೨ಕ್ಕಿಂತ ಜಾಸ್ತಿ ಇರುವ ಸ್ವಾಭಾವಿಕವಾಗಿ ಭಾರವಾದ ಧಾತುಗಳಾದ ಯುರೇನಿಯಂ, ಪೊಲೋನಿಯಂ, ಥೋರಿಯಂ, ಆಕ್ಟೀನಿಯಂ, ರೇಡಿಯಂ ಮುಂತಾದಕ್ಕೆ ಸ್ವಾಭಾವಿಕ ವಿಕಿರಣ ಪಟುತ್ವವಿದೆ.
ವಿಕಿರಣಪಟುತ್ವ ಒಂದು ನೈಸರ್ಗಿಕ ವಿದ್ಯಮಾನ. ನಿಸರ್ಗದಲ್ಲಿ 60ಕ್ಕೂ ಹೆಚ್ಚು ವಿಕಿರಣಪಟು ಧಾತುಗಳಿವೆ. ವಿಕಿರಣಪಟು ಸಮಸ್ಥಾನಿಗಳನ್ನೂ ಗಣನೆಗೆ ತೆಗೆದುಕೊಂಡರೆ ಈ ಸಂಖ್ಯೆ 1500ನ್ನು ಮೀರುತ್ತದೆ. ಇವುಗಳ ಪೈಕಿ ಕೆಲವು ಜಗತ್ತಿನ ಸೃಷ್ಟಿ ಆದಂದಿನಿಂದಲೇ ಇವೆ. ಕೆಲವು ವಿಶ್ವಕಿರಣಗಳ ಅಂತರವರ್ತನೆಯ ಹಾಗೂ ಮಾನವ ಚಟುವಟಿಕೆಗಳ ಉತ್ಪನ್ನಗಳು. ವಾಸ್ತವವಾಗಿ, ವಿಕಿರಣಪಟುತ್ವ ಇಲ್ಲದ ಸ್ಥಳವೇ ಇಲ್ಲ.
೧೮೯೮ ರಲ್ಲಿ ರುದರ್ಫೋರ್ಡ್ ಮತ್ತಿತರರು ವಿಕಿರಣಶೀಲ ವಸ್ತುಗಳಿಂದ ಮೂರು ಬಗೆಯ ವಿಕಿರಣಗಳು ಉತ್ಸರ್ಜಿಸಲ್ಪಡುವುವು ಎಂದು ತೋರಿಸಿದರು. ಅವುಗಳನ್ನು ಆಲ್ಫಾ ಕಣ (α) ಅಥವಾ ಕಿರಣ, ಬೀಟಾ (β) ಕಿರಣ ಮತ್ತು ಗ್ಯಾಮ (ɣ) ಕಿರಣ ಎಂದು ಕರೆದರು. ಪ್ರಯೋಗಗಳಿಂದ ಈ ವಿಕಿರಣಗಳಲ್ಲಿ ɣ ಕಿರಣ ಎಂಬ ಮೂರನೆಯ ಘಟಕವಿರುವುದನ್ನು ಸಿದ್ಧಪಡಿಸಿದುವು. ɣ ಕಿರಣಗಳ ಅಂತರ್ವೇಶನ ಸಾಮರ್ಥ್ಯ β ಕಣಗಳದ್ದಕ್ಕಿಂತ, β ಕಣಗಳದ್ದು α ಕಣಗಳದ್ದಕ್ಕಿಂತ ಹೆಚ್ಚು. α ಕಣಗಳು ಧನಾವೇಶಯುಕ್ತ, β ಕಣಗಳು ಋಣಾವೇಶಯುಕ್ತ ಮತ್ತು ɣ ಕಿರಣಗಳು ವಿದ್ಯುದಾವೇಶ ರಹಿತವಾದವು.
ಆಲ್ಫಾಕ್ಷಯ: ವಿಕಿರಣಶೀಲ ಧಾತುವಿನ ಬೀಜ ಕೇಂದ್ರದಿಂದ α-ಕಣ ಉತ್ಸರ್ಜನೆಯಾಗುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಆಲ್ಫಾಕ್ಷಯ ಎನ್ನುತ್ತೇವೆ.
α-ಕಣಗಳೆಂದರೆ, ಧನವಿದ್ಯುದಾವಿಷ್ಟ ಕಣಗಳು. α-ಕಣವು ಎರಡು ಪ್ರೋಟಾನ್ ಮತ್ತು ಎರಡು ನ್ಯೂಟ್ರಾನ್ಗಳಿಂದಾದ ಹೀಲಿಯಂ ನ್ಯೂಕ್ಲಿಯಸ್. ನ್ಯೂಕ್ಲಿಯಸ್ನಿಂದ ಒಂದು α-ಕಣವು ಉತ್ಸರ್ಜಿಸಲ್ಪಟ್ಟಾಗ ಆ ನ್ಯೂಕ್ಲಿಯಸ್ಸಿನ ದ್ರವ್ಯರಾಶಿಯು(A) ೪ ಏಕಮಾನ ಮತ್ತು ಪರಮಾಣು ಸಂಖ್ಯೆ(Z)ಯಲ್ಲಿ ೨ ಏಕಮಾನ ಕಡಿಮೆಯಾಗುತ್ತದೆ.
ಉದಾಹರಣೆ: zXA ನ್ಯೂಕ್ಲಿಯಸ್ನಿಂದ α ಕ್ಷಯದಿಂದ z-೨YA-೪ ನ್ಯೂಕ್ಲಿಯಸ್ಸಾಗಿ ದ್ರವ್ಯಾಂತರವಾಗುವುದನ್ನು ಈ ಸಮೀಕರಣದಿಂದ ತಿಳಿಯಬಹುದು.
zXA → z-೨YA-೪ + ೨He೪
ಉದಾಹರಣೆ: ಪರಮಾಣು ದ್ರವ್ಯರಾಶಿ (A)೨೨೬ ಮತ್ತು ಪರಮಾಣು ಸಂಖ್ಯೆ (z) ೮೮ ಉಳ್ಳ ರೇಡಿಯಂ ಧಾತು α-ಕ್ಷಯ ಹೊಂದಿ ಪರಮಾಣು ದ್ರವ್ಯರಾಶಿ (A)೨೨೨ ಮತ್ತು ಪರಮಾಣು ಸಂಖ್ಯೆ(z) ೮೬ ಹೊಂದಿರುವ ರೇಡಾನ್ ಧಾತುವಾಗುವುದು. ದ್ರವ್ಯಾಂತರವನ್ನು ಈ ಸಮೀಕರಣದಿಂದ ತಿಳಿಯಬಹುದು.
೮೮Ra೨೨೬ → ೮೬Rn೨೨೨ + ೨He೪
β-ಕ್ಷಯ: ವಿಕಿರಣ ಧಾತುವೊಂದರ ಪರಮಾಣುವಿನ ನ್ಯೂಕ್ಲಿಯಸ್ದಿಂದ β-ಕಣಗಳು ಉತ್ಸರ್ಜಿಸಲ್ಪಡುವುದಕ್ಕೆ β-ಕ್ಷಯ ಎನ್ನುತ್ತೇವೆ.
β ಕ್ಷಯದಲ್ಲಿ ಎರಡು ಬಗೆ: 1. β- ಮತ್ತು 2. β+ ಕ್ಷಯ. ಮೊದಲನೆಯದರಲ್ಲಿ ನ್ಯೂಟ್ರಾನುಗಳ ಆಧಿಕ್ಯದಿಂದಾಗಿ ಪರಮಾಣು ನ್ಯೂಕ್ಲಿಯಸ್ ಅಸ್ಥಿರವಾಗುತ್ತದೆ ಹಾಗೂ ನಿಷ್ಪತ್ತಿಯನ್ನು ಸರಿದೂಗಿಸಲೋಸುಗ ನ್ಯೂಟ್ರಾನ್ ಪ್ರೋಟಾನ್ ಆಗಿ ಪರಿವರ್ತನೆಗೊಳ್ಳುತ್ತದೆ. ಈ ಪರಿವರ್ತನೆಯ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ β ಕಣ ಮತ್ತು ಆ್ಯಂಟಿನ್ಯೂಟ್ರಿನೊ ಉತ್ಸರ್ಜನೆಯಾಗುತ್ತವೆ. ಪರಮಾಣುವಿನ ಪರಮಾಣು ಸಂಖ್ಯೆ 1ರಷ್ಟು ಹೆಚ್ಚಾಗುತ್ತದೆ.
β+ ಕ್ಷಯ: ನ್ಯೂಕ್ಲಿಯಸ್ನಲ್ಲಿ ಪ್ರೋಟಾನುಗಳ ಆಧಿಕ್ಯವಿದ್ದು, α ಕಣದ ಉತ್ಸರ್ಜನೆ ಅಸಾಧ್ಯವಾದಾಗ β+ ಕ್ಷಯ ಉಂಟಾಗುತ್ತದೆ. ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಹೆಚ್ಚುವರಿ ಪ್ರೋಟಾನುಗಳು ತಲಾ ಒಂದೊಂದು ಪಾಸಿಟ್ರಾನ್ ಮತ್ತು ನ್ಯೂಟ್ರಿನೊ ಉತ್ಸರ್ಜಿಸಿ ನ್ಯೂಟ್ರಾನುಗಳಾಗುತ್ತವೆ. ನ್ಯೂಕ್ಲಿಯಸ್ ಸ್ಥಿರವಾಗುತ್ತದೆ. ಪಾಸಿಟ್ರಾನುಗಳು ಎಲೆಕ್ಟ್ರಾನುಗಳೊಂದಿಗೆ ವರ್ತಿಸಿ ಎರಡೂ ನಾಶವಾಗುತ್ತವೆ. ಈ ಸಂದರ್ಭದಲ್ಲಿ ನಾಶವಾದ ಕಣಗಳಷ್ಟೇ ರಾಶಿ ಮತ್ತು ಶಕ್ತಿಯುಳ್ಳ ಎರಡು ɣ ಕಿರಣ ಫ಼ೋಟಾನುಗಳ ಉತ್ಸರ್ಜನೆ ಆಗುತ್ತದೆ. β+ ಕ್ಷಯ ಸಾಧ್ಯವಾಗದ ಕೆಲವು ಸನ್ನಿವೇಶಗಳಲ್ಲಿ ಪರಮಾಣುವಿನ ಒಳ ಕಕ್ಷಕದಿಂದ (ಬಹುತೇಕ ಕೆ ಕಕ್ಷಕದಿಂದ) ಎಲೆಕ್ಟ್ರಾನ್ ಒಂದನ್ನು ನ್ಯೂಕ್ಲಿಯಸ್ ಸೆರೆಹಿಡಿದು ಪ್ರೋಟಾನನ್ನು ನ್ಯೂಟ್ರಾನ್ ಆಗಿ ಪರಿವರ್ತಿಸುತ್ತದೆ. ಇದೇ ‘ಎಲೆಕ್ಟ್ರಾನ್ ಸೆರೆಹಿಡಿ (ಕ್ಯಾಪ್ಚರ್)’ ಅಥವಾ ‘ಕೆ-ಸೆರೆಹಿಡಿ’ ವಿದ್ಯಮಾನ. ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ɣ ಕಿರಣ ಮತ್ತು ನ್ಯೂಟ್ರಿನೊ ಉತ್ಸರ್ಜನೆಯಾಗುತ್ತದೆ. ಕೆಲವೊಮ್ಮೆ ನ್ಯೂಕ್ಲಿಯಸ್ನಿಂದ ಹೊಮ್ಮಿದ ɣ ಕಿರಣ ಕಕ್ಷಕದಲ್ಲಿರುವ ಎಲೆಕ್ಟ್ರಾನಿಗೆ ಢಿಕ್ಕಿಯಾಗಿ ತನ್ನ ಶಕ್ತಿಯನ್ನು ಅದಕ್ಕೆ ನೀಡುತ್ತದೆ. ಅಧಿಕ ಶಕ್ತಿ ಗಳಿಸಿದ ಎಲೆಕ್ಟ್ರಾನ್ ಪರಮಾಣುವಿನಿಂದ ಉತ್ಸರ್ಜನೆಯಾಗುತ್ತದೆ. ಈ ಪ್ರಕ್ರಿಯೆಗೆ ‘ಆಂತರಿಕ ಪರಿವರ್ತನೆ (ಇಂಟರ್ನಲ್ ಕನ್ವರ್ಶನ್)’ ಎಂದು ಹೆಸರು.
β-ಕಣಗಳೆಂದರೆ ಬರಿ ಎಲೆಕ್ಟ್ರಾನ್ಗಳಷ್ಟೆ. β-ಕಣಗಳು ಋಣ ವಿದ್ಯುದಾವಿಷ್ಟ ಕಣಗಳು, β-ಕ್ಷಯ ನಡೆಯುವ ಸಂದರ್ಭದಲ್ಲಿ ಧಾತುವಿನ ಪರಮಾಣು ದ್ರವ್ಯರಾಶಿಯು ಬದಲಾವಣೆಯಾಗುವುದಿಲ್ಲ. ಆದರೆ ಪರಮಾಣು ಸಂಖ್ಯೆ ಎಂದು ಹೆಚ್ಚಾಗುತ್ತದೆ. ಇದರ ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ವಿದ್ಯುದಂಶವು ಎಲೆಕ್ಟ್ರಾನ್ಗಳ ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ವಿದ್ಯುದಂಶಕ್ಕೆ ಸಮವಾಗಿರುವುದು.
ಉದಾಹರಣೆ: zXA ಪರಮಾಣುವು z+೧YA ಪರಮಾಣುವಾಗಿ β-ಕ್ಷಯದಿಂದ ದ್ರವ್ಯಾಂತರ ಹೊಂದುವುದನ್ನು ಈ ಕೆಳಗಿನ ಸಮೀಕರಣದಿಂದ ತಿಳಿಯಬಹುದು.
zXA → z+೧YA + -೧e೦
ಉದಾಹರಣೆ: ರೇಡಿಯಂ ಪರಮಾಣುವು ೮೮Ra೨೨೮ ಬೀಟಾ ಕಣಗಳನ್ನು ಉತ್ಸರ್ಜಿಸಿದರೆ ದೊರೆಯುವ ದ್ರವ್ಯಾಂತರಣ ಬೀಜವು ಆಕ್ಟಿನಿಯಂ ೮೯Ac೨೨೮, β-ಕ್ಷಯವನ್ನು ಈ ಸಮೀಕರಣದಿಂದ ತೋರಿಸಬಹುದು.
೮೮Ra೨೨೮ → ೮೯Ac೨೨8 + -೧e೦
ಗ್ಯಾಮಾ ಕಿರಣಗಳು ಗರಿಷ್ಠ ಆವೃತ್ತಿಯ ವಿದ್ಯುತ್ಕಾಂತೀಯ ಕಿರಣಗಳು. ಅಂದರೆ ಅವುಗಳು 'ಪ್ರೋಟಾನ್ಗಳಿಗೆ' ಸಮನಾದ ದ್ರವ್ಯರಾಶಿ ಮತ್ತು ವಿದ್ಯುದಂಶವಿರುವುದಿಲ್ಲ. ɣ-ಕ್ಷಯದ ಸಂದರ್ಭದಲ್ಲಿ ಧಾತುವಿನ ಪರಮಾಣು ಸಂಖ್ಯೆ ಮತ್ತು ಪರಮಾಣು ದ್ರವ್ಯರಾಶಿಯಲ್ಲಿ ವ್ಯತ್ಯಾಸವಾಗುವುದಿಲ್ಲ.
ಉದಾಹರಣೆ: ಪರಮಾಣುವಿನ ಬೀಜಕೇಂದ್ರದ ɣ-ಕ್ಷಯವನ್ನು ಈ ರೀತಿ ತೋರಿಸಬಹುದು.
zXA → zXA + ɣ
ಕಣಗಳನ್ನು ಉತ್ಸರ್ಜಿಸುತ್ತ ವಿಕಿರಣಪಟು ಪದಾರ್ಥದ ಪರಮಾಣು ನ್ಯೂಕ್ಲಿಯಸುಗಳು ನಿರಂತರವಾಗಿ ವಿಘಟಿಸುವ ಪ್ರಕ್ರಿಯೆಯೇ ವಿಕಿರಣಪಟು ಕ್ಷಯ. ಪದಾರ್ಥದ ಅರ್ಧ ಭಾಗ ಕ್ಷಯಿಸಲು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲವೇ ಕ್ಷಯದರದ ಅಳತೆಯ ಮಾನ. ಇದಕ್ಕೆ ಅರ್ಧಾಯು ಎಂದು ಹೆಸರು. ಉದಾ: Th232ನ ಅರ್ಧಾಯು 14 ಬಿಲಿಯನ್ ವರ್ಷಗಳು. ವಿಕಿರಣಪಟು ಸಮಸ್ಥಾನಿಯಿಂದ ಆರಂಭವಾಗಿ ಜರಗುವ ಕ್ಷಯಗಳ ಸರಪಣಿಯೇ ವಿಕಿರಣಪಟು ಕ್ಷಯ ಸರಣಿ. ಉದಾ: ಯುರೇನಿಯಮ್-238 → ತೋರಿಯಮ್-234 → ಪ್ರೊಟೆಕ್ಟೀನಿಯಮ್-234 → ಯುರೇನಿಯಮ್-234 → ತೋರಿಯಮ್-230 → ರೇಡಿಯಮ್-226. ರೇಡಿಯಮ್-226 ಇಂತೆಯೇ ಕ್ಷಯಿಸತೊಡಗಿ ಕೊನೆಗೆ ಅವಿಕಿರಣಪಟು ಸೀಸ-206 ಸಮಸ್ಥಾನಿಯಾಗುತ್ತದೆ.
ಗೀಗರ್ ಮುಲ್ಲರ್, ವಿಲ್ಸನ್ ಮೇಘಮಂದಿರ ಮುಂತಾದ ಸಾಧನಗಳಿಂದ ವಿಕಿರಣ ಕಣಗಳನ್ನು ಪತ್ತೆ ಮಾಡಬಹುದು.
ಸೈದ್ಧಾಂತಿಕವಾಗಿ ಹೇಳುವುದಾದರೆ ವಿಕಿರಣಪಟು ಧಾತುವಿನ ಕ್ಷಯನ ಪ್ರಕ್ರಿಯೆಯು ಎಂದಿಗೂ ಪೂರ್ಣಗೊಳ್ಳದು. ವಿಕಿರಣಶೀಲ ವಸ್ತುಗಳ ಕ್ಷಯನ ಬೇರೆಬೇರೆಯಾಗಿರುತ್ತದೆ. ಕ್ಷಯನ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ವಿಕಿರಣಶೀಲ ಧಾತುವಿನ ದ್ರವ್ಯರಾಶಿ ಕಡಿಮೆಯಾಗುತ್ತದೆ. ಒಂದು ವಿಕಿರಣ ವಸ್ತುವಿನ ಪ್ರಾರಂಭದ ದ್ರವ್ಯರಾಶಿಯ ಅರ್ಧದಷ್ಟಾಗಲು ಬೇಕಾಗುವ ಕಾಲವನ್ನು ಅರ್ಧಾಯುಷ್ಯ ಎನ್ನುತ್ತೇವೆ.[8] ಇದನ್ನು 'T' ಎಂಬ ಅಕ್ಷರದಿಂದ ಸೂಚಿಸುತ್ತೇವೆ.
ವಿಕಿರಣ ವಸ್ತುಗಳ ಅರ್ಧಾಯುಷ್ಯ ಅವಧಿಯು ಮೈಕ್ರೋ ಸೆಕೆಂಡ್ನಿಂದ ಹಿಡಿದು ಕೆಲವು ಸಾವಿರಾರು ವರ್ಷಗಳ ಬಹುವಿಸ್ತಾರ ವ್ಯಾಪ್ತಿಯಲ್ಲಿರುವುದು. ಉದಾಹರಣೆ: ಇಂಗಾಲ ೧೪ ರ ಅರ್ಧಾಯುಷ್ಯ ೫೭೦೦ ವರ್ಷಗಳು.[9] ಮರದಲ್ಲಿ ಒಂದು ಗ್ರಾಂ ಇಂಗಾಲ ೧೪ ಇದೆ ಎಂದು ಭಾವಿಸಿದರೆ, ೫೭೦೦ ವರ್ಷಗಳ ನಂತರ ೦.೫ ಗ್ರಾಂ ಇಂಗಾಲ ೧೪ ಇರುತ್ತದೆ.
ಕೆಲವು ಮೂಲ ವಸ್ತುಗಳ ಅರ್ಧಾಯುಷ್ಯವನ್ನು ಈ ಕೆಳಗಿನ ಕೋಷ್ಟಕದಲ್ಲಿ ಕೊಟ್ಟಿದೆ.
ಧಾತುಗಳು | ಅರ್ಧಾಯುಷ್ಯ |
---|---|
ಥೋರಿಯಂ-೨೩೨ | ೧೦೧೦ ವರ್ಷಗಳು |
ಯುರೇನಿಯಂ-೨೩೫ | ೪.೫೧*೧೦೯ ವರ್ಷಗಳು |
ರೇಡಿಯಂ-೨೩೬ | ೧೬೨೦ ವರ್ಷಗಳು |
ಸ್ಟ್ರಾನ್ಷಿಯಂ-೮೮ | ೨೮ ವರ್ಷಗಳು |
ಕೋಬಾಲ್ಟ್-೬೦ | ೫.೩ ವರ್ಷಗಳು |
ಫಾಸ್ಪರಸ್-೩೨ | ೧೪.೩ ದಿನಗಳು |
ಬಿಸ್ಮತ್-೨೧೦ | ೫ ದಿನಗಳು |
ರೆಡಾನ್-೨೩೨ | ೩.೮೨೫ ದಿನಗಳು |
ಪೊಲೋನಿಯಂ-೨೧೩ | ೪.೨*೧೦-೯ |
ಸ್ವಾಭಾವಿಕವಾಗಿ ದೊರೆಯುವ ವಿಕಿರಣ ಸಮಸ್ಥಾನಿಗಳು ಅತಿ ಹೆಚ್ಚು ಪರಮಾಣು ಸಂಖ್ಯೆಗಳನ್ನು ಹೊಂದಿರುತ್ತವೆ. ಹಗುರವಾದ ಧಾತುಗಳನ್ನೂ ಕೃತಕವಾಗಿ ವಿಕಿರಣ ಧಾತುಗಳನ್ನಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು. ಈ ರೀತಿ ಉತ್ಪನ್ನವಾದ ವಿಕಿರಣ ಧಾತುಗಳನ್ನು ಕೃತಕ ವಿಕಿರಣ ಧಾತುಗಳು ಎನ್ನುತ್ತೇವೆ. ಬೇರೆ-ಬೇರೆ ಪರಮಾಣು ದ್ರವ್ಯರಾಶಿ ಹಾಗು ಒಂದೇ ಪರಮಾಣು ಸಂಖ್ಯೆ ಹೊಂದಿರುವ, ವಿಕಿರಣ ಮೂಲ ವಸ್ತುವಿನ ವಿವಿಧ ಪರಮಾಣುಗಳನ್ನು ವಿಕಿರಣ ಸಮಸ್ಥಾನಿಗಳು ಎನ್ನುತ್ತೇವೆ.[10]
ವಿಕಿರಣಪಟುತ್ವವನ್ನು ಕೃತಕವಾಗಿ ಪ್ರೇರೇಪಿಸಲು ಸಾಧ್ಯ ಎಂದು ತೋರಿಸಿದವ ರುದರ್ಫ಼ೋರ್ಡ್ (1919). ಸಾಮಾನ್ಯ ನೈಟ್ರೊಜನ್ (ನೈಟ್ರೊಜನ್-14) ಅನಿಲವನ್ನು α ಕಣಗಳಿಂದ ತಾಡಿಸಿದಾಗ ಅದರ ನ್ಯೂಕ್ಲಿಯಸುಗಳು ಅವನ್ನು ಸೆರೆಹಿಡಿದು ಪ್ರೋಟಾನುಗಳನ್ನು ಉತ್ಸರ್ಜಿಸುತ್ತ ಆಕ್ಸಿಜನ್-17 ಸ್ಥಿರಸಮಸ್ಥಾನಿ ಆಗುತ್ತದೆಂದು ಆತ ಸಿದ್ಧಪಡಿಸಿದ. ಐರೀನೆ ಜೋಲಿಯಟ್ ಕ್ಯೂರಿ ಮತ್ತು ಫ಼್ರೆಡ್ರಿಕ್ ಜೋಲಿಯಟ್ ಕ್ಯೂರಿ ಎಂಬ ಫ಼್ರೆಂಚ್ ರಸಾಯನವಿಜ್ಞಾನಿಗಳು ಅಲ್ಯೂಮಿನಿಯಮನ್ನು α ಕಣಗಳಿಂದ ತಾಡಿಸಿ ಕೃತಕ ವಿಕಿರಣಪಟು ಪದಾರ್ಥಗಳನ್ನು ಸೃಷ್ಟಿಸಿದವರಲ್ಲಿ ಮೊದಲಿಗರು (1920). ಅಲ್ಯೂಮಿನಿಯಮ್ನಿಂದ ವಿಕಿರಣಪಟು ಫಾಸ್ಫರಸ್ ಸಮಸ್ಥಾನಿಯನ್ನು, ಬೋರಾನ್ನಿಂದ ವಿಕಿರಣಪಟು ನೈಟ್ರೊಜನ್ ಸಮಸ್ಥಾನಿಯನ್ನು ಮತ್ತು ಮೆಗ್ನೀಸಿಯಮ್ನಿಂದ ವಿಕಿರಣಪಟು ಅಲ್ಯೂಮಿನಿಯಮ್ ಸಮಸ್ಥಾನಿಯನ್ನು ಇವರು ಸೃಷ್ಟಿಸಿದರು. ತದನಂತರ ಅನೇಕ ಕೃತಕ ವಿಕಿರಣಪಟು ಪದಾರ್ಥಗಳ ಸೃಷ್ಟಿ ಆಗಿದೆ.
೧೯೩೪ ರಲ್ಲಿ ಕ್ಯುರಿ ಜೂಲಿಯಟ್ ಮತ್ತು ಆಕೆಯ ಪತಿ ಫ್ರೆಡ್ರಿಕ್ ಜೂಲಿಯಟ್ ಮೊದಲಿಗೆ ಕೃತಕ ವಿಕಿರಣ ಪಟುತ್ವವನ್ನು ಕಂಡುಹಿಡಿದರು.೧೯೩೫ ರಲ್ಲಿ ಇವರಿಗೆ ರಸಾಯನ ಶಾಸ್ತ್ರದ ನೊಬೆಲ್ ಪಾರಿತೋಷಕವನ್ನು ಪ್ರದಾನ ಮಾಡಲಾಯಿತು. ಅವರು ಬೋರಾನ್ ಮತ್ತು ಅಲ್ಯುಮಿನಿಯಂ ಪರಮಾಣುಗಳನ್ನು α-ಕಣಗಳಿಂದ ತಾಡಿಸಿದಾಗ, α ಕಣಗಳ ಆಕರವನ್ನು ತೆಗೆದ ನಂತರವೂ ವಿಕಿರಣವನ್ನು ಉತ್ಸರ್ಜಿಸುತ್ತಿರುವುದನ್ನು ಅವರು ಗಮನಿಸಿದರು. ಈ ಉತ್ಸರ್ಜಿತ ವಿಕಿರಣಗಳು ಪಾಸಿಟ್ರಾನ್ಗಳು (-೧e೦).
೧೩Al೨೭ + ೨He೪ → ೧೫P೩೦ + ೦n೧
೧೫P೩೦ → ೧೪Si೩೦ + +೧e೦ (β+)
ಹಗುರವಾದ ಧಾತುಗಳನ್ನು ವೇಗೋತ್ಕರ್ಷಗೊಳಿಸಿ ಚಲಿಸುತ್ತಿರುವ α ಕಣಗಳಂತಹ ಭಾರವಾದ ಕಣಗಳಿಂದ ತಾಡಿಸುವುದರಿಂದ ಕೃತಕ ವಿಕಿರಣ ಧಾತುಗಳು ಉಂಟಾಗುತ್ತವೆ.
ವಿಕಿರಣ ಸಮಸ್ಥಾನಿಗಳು | ಉಪಯೋಗಗಳು |
---|---|
ವಿಕಿರಣ ಕೋಬಾಲ್ಟ್-೬೦ | ಕ್ಯಾನ್ಸರ್ ರೋಗದ ಚಿಕಿತ್ಸೆಯಲ್ಲಿ |
ವಿಕಿರಣ ಸೋಡಿಯಂ-೨೪ | ಔಷಧಿಗಳ ಪರಿಣಾಮವನ್ನು ಅಧ್ಯಯನ ಮಾಡಲು |
ವಿಕಿರಣ ಇರಿಡಿಯಂ | ಯಂತ್ರದ ಭಾಗಗಳ ಸವಕಳಿಯನ್ನು ಪರೀಕ್ಷಿಸಲು |
ಯೂರೇನಿಯಂ-೨೩೫ | ಅಣುಶಕ್ತಿ ಉತ್ಪಾದಿಸಲು |
ವಿಕಿರಣ ಫಾಸ್ಪರಸ್-೩೦ | ಯಾವ ಬೆಳೆಗೆ ಮತ್ತು ಭೂಮಿಗೆ ಎಷ್ಟು ಫಾಸ್ಫಾಟಿಕ್ ಗೊಬ್ಬರವನ್ನು ಹಾಕಬೇಕೆಂಬುದನ್ನು ನಿರ್ಧರಿಸಲು |
ವಿಕಿರಣ ಕಾರ್ಬನ್/ಕಾರ್ಬನ್-೧೪ | ಶಿಲೆಗಳು,ಪಳೆಯುಳಿಕೆ ಮತ್ತು ಪ್ರಾಕ್ತನ ನಮೂನೆಗಳ ವಯಸ್ಸನ್ನು ನಿರ್ಧರಿಸಲು |
ವಿಕಿರಣ ಐಯೋಡಿನ್-೧೩೧ | ಥೈರಾಯ್ಡ್ ಗ್ರಂಥಿಗಳ ಚಿಕಿತ್ಸೆಯಲ್ಲಿ |
ಎಸ್ಐ ಪದ್ಧತಿಯಲ್ಲಿ ವಿಕಿರಣಪಟು ಆಕರದ ಚಟುವಟಿಕೆಯ ಅಳತೆಯ ಏಕಮಾನ ಬೆಕ್ವೆರೆಲ್ (ಪ್ರತೀಕ: Bq; 1 ಬೆಕೆರಲ್ = ನ್ಯೂಕ್ಲಿಯಸ್ ವಿಘಟನ ದರ 1 ಸೆಕೆಂಡಿಗೆ 1 ನ್ಯೂಕ್ಲಿಯಸ್; ಹಳೆಯ ಏಕಮಾನ: ಕ್ಯೂರಿ). ಒಡ್ಡುವಿಕೆಯ (ಎಕ್ಸ್ಪೋಶರ್) ಅಳತೆಯ ಏಕಮಾನ ಕೂಲಂಬ್ ಪರ್ ಕಿಲೊಗ್ರಾಮ್ (ಪ್ರತೀಕ: C kg-1; 1 ಕಿಗ್ರಾಮ್ ಶುಷ್ಕ ವಾಯುವಿನಲ್ಲಿ 1 ಕೂಲಂಬ್ ಆವೇಶ ಉತ್ಪಾದಿಸಬಲ್ಲ ಅಯಾನೀಕರಿಸುವ ವಿಕಿರಣದ ಪ್ರಮಾಣ; ಹಳೆಯ ಏಕಮಾನ: ರಾಂಟ್ಜನ್). ಅಯಾನೀಕರಿಸುವ ವಿಕಿರಣದ ಅಪಶೋಷಿತ ಗುಟ್ಟಿಯ (ಅ್ಯಬ್ಸಾರ್ಬ್ಡ್ ಡೋಸ್) ಅಳತೆಯ ಏಕಮಾನ ಗ್ರೇ (ಪ್ರತೀಕ: Gy; 1 ಕಿಗ್ರಾಮ್ ದ್ರವ್ಯಕ್ಕೆ 1 ಜೂಲ್ ಶಕ್ತಿ ಪೂರೈಕೆ; ಹಳೆಯ ಏಕಮಾನ: ರೇಡ್). ಸಮಾನ ಗುಟ್ಟಿ (ಡೋಸ್ ಈಕ್ವಿವಲೆಂಟ್) ಜೀವಿಗಳ ಮೇಲೆ ಆಗುವ ವಿಕಿರಣ ಪರಿಣಾಮದ ಅಳತೆ. ವಿಕಿರಣಾಕರದ ಬಗೆಯನ್ನು ಆಧರಿಸಿರುವ ಕಾರಕದಿಂದ ಅಪಶೋಷಿತ ಗುಟ್ಟಿಯನ್ನು ಗುಣಿಸಿ ಇದರ ನಿರ್ಧಾರ. ಏಕಮಾನ ಸಿಯೆವರ್ಟ್ (ಪ್ರತೀಕ: Sv; 1 ಕಿಲೊಗ್ರಾಮಿಗೆ 1 ಜೂಲ್ ಸಮಾನ ಗುಟ್ಟಿ; ಹಳೆಯ ಏಕಮಾನ: ರೆಮ್)
ವಿಕಿರಣಗಳಿಂದ ಪರಿಸರವು ಕಲುಷಿತಗೊಂಡು ಅಪಾಯಕಾರಿ ದುಷ್ಪರಿಣಾಮಗಳಾಗುತ್ತವೆ. ಚಿಕಿತ್ಸೆಗಳ ಸಮಯದಲ್ಲಿ ವಿಕಿರಣಗಳನ್ನು ಅತಿಯಾಗಿ ಬಳಸುವುದರಿಂದ ಮತ್ತು ಜೀವರಾಶಿಗಳ ಮೇಲೆ ಹೆಚ್ಚು ಬಳಸುವುದರಿಂದ ವಿಕಿರಣ ಪರಿಣಾಮವು ಮಾರಣಾಂತಕವಾಗುವುದು.ಇದನ್ನು ವಿಕಿರಣಗಳ ದುಷ್ಪರಿಣಾಮ ಎನ್ನುತ್ತೇವೆ.
ಆಹಾರ ಪದಾರ್ಥಗಳ ಮೇಲೆ ಯಾವುದಾದರೂ ಸೂಕ್ತ ವಿಕಿರಣ ಸಮಸ್ಥಾನಿಯಿಂದ ದೊರೆಯುವ ಗ್ಯಾಮ ಕಿರಣಗಳನ್ನು ಹಾಯಿಸುವುದರಿಂದ ಆಹಾರ ವಿಕಿರಣೋಪಚಾರವನ್ನು ಮಾಡಲಾಗುವುದು. ಸಾಮಾನ್ಯವಾಗಿ ಬಳಸಲಾಗುವ ವಿಕಿರಣ ಸಮಸ್ಥಾನಿ ಕೋಬಾಲ್ಟ್-೬೦. ಇದರಿಂದ ಉತ್ಸರ್ಜಿತವಾಗುವ ಗ್ಯಾಮ-ಕಿರಣವನ್ನು ಆಹಾರಗಳ ಮೂಲಕ ಹಾಯಿಸಿದಾಗ ರೋಗಕಾರಕ ಬ್ಯಾಕ್ಟೀರಿಯಾ ಮತ್ತು ಆಹಾರಗಳನ್ನು ಹಾಳುಮಾಡುವ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳನ್ನು ನಾಶಗೊಳಿಸುತ್ತವೆ. ಆದರೆ ಇದು ಆಹಾರದ ಗುಣ, ರುಚಿ ಮತ್ತು ರಚನೆಯನ್ನು ಬದಲಾಯಿಸಲಾರದು. ಆಹಾರವು ರೇಡಿಯೋ ಐಸೋಟೋಪ್ನೊಂದಿಗೆ ಸಂಪರ್ಕ ಹೊಂದದೇ ಇರುವುದರಿಂದ ಆಹಾರ ಪದಾರ್ಥವೂ ವಿಕಿರಣ ಗುಣವನ್ನು ಹೊಂದುವುದಿಲ್ಲ.
ನಿರೀಕ್ಷೆಗಿಂತಲೂ ಹೆಚ್ಚಿನ ಮನೆಯಲ್ಲಿ ಬೆಂಕಿಯನ್ನು ಸೂಚಿಸುವ ಎಚ್ಚರಿಕೆಯ ಧೂಮಶೋಧಕ ವ್ಯವಸ್ಥೆಯನ್ನು ಸ್ಥಾಪಿಸಲಾಗಿರುತ್ತದೆ. ಈ ಬಗೆಯ ವ್ಯವಸ್ಥೆಗಳಲ್ಲಿ ಅಮೆರಿಷಿಯಂ-೨೪೧ ಅಲ್ಪ ಪ್ರಮಾಣದಲ್ಲಿರುತ್ತದೆ ಎಂಬುದು ಅನೇಕ ಗ್ರಾಹಕರಿಗೆ ತಿಳಿದಿಲ್ಲ. ಈ ಧಾತುವಿನ ವಿಕಿರಣ ಗುಣವನ್ನು ಉಪಯೋಗಿಸಿಕೊಂಡು ಬೆಂಕಿಯಿಂದ ಬರುವ ಹೊಗೆಯನ್ನು ಪ್ರಾರಂಭಿಕ ಹಂತದಲ್ಲಿಯೇ ಪತ್ತೆ ಮಾಡಬಹುದು. ಮುಂಚಿತವಾಗಿ ಎಚ್ಚರಿಕೆ ಸೂಚಿಸುವ ಈ ಧಾತುವಿನ ಸಾಮರ್ಥ್ಯ ಅನೇಕ ಜೀವಗಳನ್ನುಳಿಸುತ್ತದೆ. ಸಮೀಕ್ಷೆಗಳಿಂದ ತಿಳಿದು ಬಂದದ್ದು ೮೦% ಸುಟ್ಟಗಾಯಗಳು ಮತ್ತು ೮೦% ಮಾರಣಾಂತಿಕ ಬೆಂಕಿಯಿಂದ ಆದ ಸುಟ್ಟ ಗಾಯಗಳು ಧೂಮ ಶೋಧಕವಿಲ್ಲದ ಮನೆಗಳಲ್ಲಿಯೇ ಉಂಟಾಗಿರುವುದು.
ಹೆಚ್ಚು ಅರ್ಧಾಯುಷ್ಯವನ್ನು ಹೊಂದಿರುವ ಧಾತುಗಳಾದ K೪೦, Rb೮೭, U೨೩೮ ಮುಂತಾದವುಗಳನ್ನು ಬಳಸಿ ಒಂದು ಶಿಲೆಯ ವಯಸ್ಸನ್ನು ಅಂದಾಜುಮಾಡಲಾಗುವುದು. ೯೨U೨೩೮ ನಿರಂತರ ಕ್ಷಯನ ಹೊಂದಿ ದ್ರವ್ಯಾಂತರಣ ಪ್ರಕ್ರಿಯೆಯಿಂದ ಅನೇಕ ಧಾತುಗಳಾಗಿ ಪರಿವರ್ತಿಸಿ ಅಂತಿಮವಾಗಿ ಸೀಸವಾಗುತ್ತದೆ. ಈ ಕ್ರಮದಿಂದ ಭೂಮಿಯ ವಯಸ್ಸು ಸುಮಾರು ೩.೮ ಬಿಲಿಯನ್ ವರ್ಷಗಳು ಎಂದು ಅಂದಾಜು ಮಾಡಲಾಗಿದೆ.
ನಿಯಂತ್ರಿತ ವಿಕಿರಣಪಟುತ್ವಕ್ಕೆ ಅನೇಕ ಉಪಯೋಗಗಳಿವೆ. ಶಿಲೀಂಧ್ರ, ಬ್ಯಾಕ್ಟೀರಿಯ ಮೊದಲಾದ ಸೂಕ್ಷ್ಮಜೀವಿಗಳನ್ನು ವಿಕಿರಣನದಿಂದ (ರೇಡಿಯೇಶನ್) ನಾಶಮಾಡುವುದು ಬಲು ಸುಲಭ. ಆದುದರಿಂದ ವಸ್ತುಗಳನ್ನು ಕ್ರಿಮಿಶುದ್ಧೀಕರಿಸಲು ಇದರ ಬಳಕೆ. ಪದಾರ್ಥದ ಒಳಗಿರುವ ಜೀವಿಗಳನ್ನೂ γ ಕಿರಣ ನಾಶ ಮಾಡುತ್ತದೆ. ಪುರಾತನ ಕಲಾಕೃತಿಗಳ ಸಂರಕ್ಷಣ ಕಾರ್ಯದಲ್ಲಿ, ಜನಾಂಗವಿಜ್ಞಾನದಲ್ಲಿ ಅನ್ವಯ ಉಂಟು. ಹಗುರ ಮತ್ತು ಅಧಿಕ ರೋಧವುಳ್ಳ ಪದಾರ್ಥಗಳನ್ನು (ಉದಾ: ನಿರೋಧ, ವಿದ್ಯುತ್ ಕೇಬಲ್, ಕೃತಕ ಅಂಗ, ಶಾಖ ಕವಚ) ನಿರ್ದಿಷ್ಟ ಸನ್ನಿವೇಶಗಳಲ್ಲಿ ವಿಕಿರಣನಪ್ರೇರಿತ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗಳ ನೆರವಿನಿಂದ ಉತ್ಪಾದಿಸಬಹುದು. ಪದಾರ್ಥಗಳ ಆಂತರಿಕ ದೋಷಗಳನ್ನು ಎಕ್ಸ್ ಅಥವಾ ಗ್ಯಾಮ ಕಿರಣದೂಲಗಳ ನೆರವಿನಿಂದ ಪತ್ತೆಹಚ್ಚಬಹುದು (ಔದ್ಯಮಿಕ x ಅಥವಾ γ ರೇಡಿಯೊ ಲೇಖನ). ಸೋರುವಿಕೆ ಮತ್ತು ಬೆಂಕಿ ಸಂಸೂಚಕಗಳಾಗಿ ಮತ್ತು ಮಟ್ಟ ಪ್ರಮಾಪಿಗಳಾಗಿಯೂ ವಿಕಿರಣಪಟು ನ್ಯೂಕ್ಲೈಡುಗಳ ಬಳಕೆ ಉಂಟು. ಕೃತಕ ಉಪಗ್ರಹಗಳಲ್ಲಿ ಶಕ್ತಿ ಆಕರವಾಗಿಯೂ ಬಳಸುವುದುಂಟು. ರೇಡಿಯೊಚಿಕಿತ್ಸೆ, ಕಾರ್ಬನ್-14 ಕಾಲನಿರ್ಣಯ, ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆ ಮೊದಲಾದ ಅನ್ವಯಗಳು ಬಲು ವ್ಯಾಪಕವಾಗಿವೆ.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.