Loading AI tools
地震の際の揺れを計測する機器 ウィキペディアから
地震計(じしんけい)は、地震の際の揺れを計測する機器である。
地震計は地震により発生した地震動(地面の動き)を計測し、記録する機器である。震度計(正確には「計測震度計」)は、地震計の一種であるが、計測された地震動から計測震度を算出する機能をもつため、特に震度計と別称されている。
地震計は、地震動を計測するセンサー及びそれらを記録する計測システムによって構成される。
地震計は3次元空間のXYZの3成分のセンサーを備え、それらを直交する南北・東西・上下の各方向にそろえて設置することで、地面の三次元的な動きを把握できるように設置することが一般的である。しかしながら、観測目的によっては1つまたは2つの成分のみ計測することや、南北や東西とは異なる方位(たとえば、建築構造物に平行な向きなど)にセンサーを配置することもある。
地震計は目的に応じて多様な種類があり、古くは始皇帝の時代に既に存在した地震の揺れにより竜が咥えた鉄球が落下する簡単な仕組みのもの[注 1]から、地球の裏側で発生した地震の人間には感じないようなわずかな揺れを検知できるもの、震度階級最大の激震が生じても記録できるものまで様々である。
気象庁では各地に設置された地震計の情報を集積し、発震時刻と震源地を決定し、マグニチュードを算出する。これに合わせて、津波の発生の予測を行う。また、震度計の情報もリアルタイムで収集し震度情報として発表する。
一般に世界初の地震計として紹介されるのは中国の後漢時代の張衡による地震計である[1]。これは龍を象った口に球体が不安定に置かれており、一定の大きさの揺れがあると下にある蛙を象った口に落ちるというものである[1]。
その後の地震計の歴史はかなり間があき、18世紀初頭のフランスで考え出された地震計にまで下る[1]。これは溝を付けた皿に水銀を満たして、揺れによって溢れ出た水銀の量で地震の有無と大きさを推定しようとするものである[1]。
初期の地震計は地震の揺れを時々刻々と記録するものではなく、単に一定規模以上の揺れが発生したかどうかを知るための道具であった[1]。
近代的な地震計は日本で発明された[1]。東京大学理学部に招聘されたジェームズ・アルフレッド・ユーイング(James Alfred Ewing, 1855–1935)は、ジョン・ミルンらとともに1880年に水平振り子を用いた水平動2成分の円盤記録式地震計を製作し実用的な地震計を完成させた[2]。1893年に日本の地震計がシカゴ万国博覧会 (1893年)に出品され、その先進性が高く評価された。地震器械の発明はユーイングとミルン、地震雛形の発明は関谷清景、良工(製造)は屋井琢によるものだった[3]。屋井(1919年没)は浅草の「教育品製造合資会社」社員[4][5]。電源には屋井先蔵考案の乾電池が使用された[6]。
地震計の基本的な動作原理は地震計の中に入っている錘(おもり)を不動点と仮定し、地表面の揺れを相対変位として測定する。これを極論すると地球の自転に合わせて移動する宙に浮いた状態の錘があり、錘の位置に対して地上の事物がどのくらいズレたかを測定することを意味する。
地震計の構造は単振り子によって説明される。ただし振り子の長さが数センチ程度の単純な単振り子は周期が短く、ごく短周期の地震動しか捉えることが出来ない。そこで様々な方法で周期延ばしが行われている。単純な方法としては、振り子を水平に近づけるというものがある[7]。
また地震動を検知したあとは速やかに揺れを減衰させる必要がある。そのため、適切な減衰定数となるように設計される[8]。また微小な地震動を検知するために、倍率を上げる工夫もなされている[9]。
水平方向の揺れに対しては同じ仕組みの地震計を南北と東西方向に配置して検知する。上下動の揺れは錘をばねで吊り、ばねの伸び縮みを利用して検知する。
地震の揺れは振幅がマイクロメートルレベルのものから長周期大振幅によるものまで様々である。例えば人間が気付かない微小地震では振幅は数nm(ナノメートル)で振動数は数十Hzであり、地割れが起きるような巨大地震では振幅は数m、周期は数十秒から300秒を越える程度にもになる。
地震計は目的や用途に応じて次の種類が存在する。たとえば、地震発生直後に行われる臨時地震観測では機動性に富んだオフライン型のデータロガー付きの地震計を併用し緻密な観測網を短期間に構築し数ヶ月余震観測が行われる[10][11]。
高感度地震計は微小地震による振幅の検出を行なう。無感地震等の微小地震は世界各地で数多く起きておりこれらの情報を蓄積することで地殻構造の解析に用いられる。微小地震活動の研究は、地震の中長期的な予測にも貢献している。
測定周波数範囲が広く、大地震の検知や遠く離れた震源から伝播するゆっくりした揺れまで検知し、主に地球の深部構造である地殻の研究や震源メカニズムの解析に用いられる。この種の地震計ではSTS-1またはSTS-2地震計が主力である。温度変化や気圧変化に敏感であるため地下の横坑の奥に設置されることが多い。
固有振動数が低い錘を用い、強い揺れを記録する。
震度計は強震計の一種である。日本の地震の震度の観測と発表は、気象庁で明治17年(1884年)以来100年以上にわたってすべて職員の体感で行われていた。震度計は、気象庁が平成3年(1991年)に世界で初めて開発し、平成8年(1996年)4月から全て震度計による観測に切り替え、体感観測を廃止した。[12]
日本では、国の機関(気象庁、防災科学技術研究所、国土交通省)や自治体、大学、民間企業(高速道路会社、鉄道事業者、NTT、ガス会社、電力会社、建設会社)が独自に地震観測を行っている。現在、これら各機関の強震計の設置台数を総合すると全国で10000台を超えるといわれている。
震度の情報は国民生活への影響が大きいこともあり、地震波を計測する地震計(強震計)も改良が行われている。これまでは身近な構造物に被害をもたらす固有周期が0.5秒-2秒の「やや短周期」の地震波に感度のピークを設定することが多かった。しかし近年はより長大な構造物が増加し、固有周期が2秒-20秒の「やや長周期」にまで感度のピークを広げて設計している。大規模災害に繋がる断層地震ではさらに20秒-200秒の長周期が現れることが知られており、これを観測する強震計も設計されている[13]。
サイズモ系・非サイズモ系に分類され、いずれも用いるセンサに機械式・電気式がある。「サイズモ」とは英語の Seismometer(地震計)、 Seismograph(地震計)、Seismogram(地震記象)などにある地震を意味する seism や地震・震動の接頭語の seism-、もしくは「地震の」を意味する連結詞の seismo- を起源とする語である。代表的なものを以下に示す:
地震の揺れを速度・加速度・変位の情報として記録するために加速度計(Accelerometer)・変位計・速度計の分類に分ける。原理的には、非常に長い振り子を使うと変位計に、短い振り子を使うと加速度計に、振り子の振動子を粘性流体中におくと速度計となる。
一般的に、変位を求めたい場合には加速度計の記録を2回積分するか、速度計の記録を1回積分する。変位計の記録ならば処理の必要がないが、変位計は場合によっては振り子の長さを数メートル、振動子の質量を数百キログラムにする必要があるため、その兼ね合いが難しい。
現在は揺れの大きさについて、加速度計の記録をそのまま用い、加速度の単位であるガルで表すことも多い。変位量メートルで表すこともある。
海洋底での地震を測定する目的で開発され、設置される。海底ケーブルを使用してデータを伝送する形式や超音波でデータを水上の船舶にむけて送信する機種や半導体記録装置を備えていて浮上時に観測機材と共にデータを回収する機種がある。海底ケーブルを使用してデータを伝送する機種はリアルタイムでデータを伝送できるので通常の観測と並行して津波警報発令等の目的で使用される。
すでに現役を引退したものも含む。
地震計の設置環境によっては、本来の地盤の応答を正確に記録できないことがある。日本国内で発生した地震においても、震度計が周辺のものに比べて際立って高い結果を出すことがある。その理由として、地震計の設置された地盤や路盤によるもの(崖の周辺や泥地への設置など)と、地震計そのものの設置状況によるもの(地震計と土台の間に隙間があいている、地震計が傾いているなど)がある。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.