Loading AI tools
ウィキペディアから
分岐器(ぶんきき[1]、ぶんぎき[2]、英: railroad switch, turnout)とは、鉄道の線路において線路を分岐させ、列車又は車両の進路を選択する機構。アメリカ英語での正式名称は、ターンアウトスイッチ。アメリカでは、分岐器のうち、進路を転換する部分のことをポイント(point)という[3]。
分岐器は一般的に1線の線路を2線(またはそれ以上)に分岐させるものであり、下記の4つの部位から成る。1線側を前端、2線側を後端と称する。
専門的には、たとえば「弾性分岐器」といえば弾性ポイントを使用した分岐器全体を指し、「弾性ポイント」といえば上記4部位のうちの「ポイント部」だけを指す。
分岐器は通常、図に示したような構造になっている。黒線はストックレール(基本レール)、茶色の線はトングレール(先端軌条)、赤線はリードレール、紫の線はウィングレール、青線はガードレール(護輪軌条:ごりんきじょう)、オレンジ色の線は主レール、緑線は全体でクロッシング(米語:フログ)と呼ばれ[5]、クロッシングを構成するもっとも先端の頭部が尖ったレールをノーズレール(鼻端レール)と呼ぶ[5]。進路変更をするときは、トングレールを分岐側と反対側のストックレールに移動する。なお、弾性分岐器では、トングレールとリードレールとウィングレールが一体化されている。
分岐器は、通常はある一定の方向(本線)に列車を進入させるようになっている。これを定位という。また、通常とは異なる方向(副本線)に列車が進入するようになっていることを反位という。また列車が分岐器の分岐する方向に向かうことを対向といい、列車が分岐器の合流する方向に向かうことを背向という。
ノーズ付近に見られるすき間は車輪のフランジがスムーズに通過できるように設けられたもので、フランジウェイと呼ぶ。磨耗防止[6] とこのすき間による他線への誤進入を防ぐため高速通過する車両は減速を強いられる。このため、高速運転の多い線区には下記のノーズ可動式分岐器が多く用いられる。
上記のフランジウェイによる問題点を解決するため、ノーズまたはウィングレールを可動式にしてウィングレール(ノーズ)に密着させる事でフランジウェイを塞いで、高速通過を確実にしているものであり、主に新幹線などの高速鉄道で多用されている[7]。その場合、ノーズ(ウィングレール)はトングレールと連動するようになっている。
右に可動式ノーズ(ノーズ可動クロッシング)の概略図を示す。このうち水色のレールが緑色のレールを軸にして動くことによって、フランジウェイを塞いでいる(図では直進の場合のフログの状態)[8]。異線進入のリスクが小さくなることからクロッシング部のガードレールが省略されることがある。従来、可動式ノーズは、新幹線たけではなく在来線や私鉄線においても北越急行ほくほく線や京成成田スカイアクセスなどのように高速通過の多い分岐器を中心に設置されていたが、騒音低減の目的で高速通過を行わない一般的な分岐器においてもノーズ可動式分岐器を採用する事例が増えている[9]。新幹線などの高速鉄道において、高速で通過する箇所では、さらにトングレールとリードレールを一体化してたわませる構造としているが、基本レールとトングレールとの間が密着(接着とも言う)せず隙間があると、高速走行に支障を与えるため、その2本のレールが密着しているかどうかを監視する接着照査器[10] を基本レールの外側に2台ずつ設置しており、分岐器の開通方向を表示する開通方向表示器をクロッシング部手前(対向方向)のレールの間に設置しており、開通側には黒地に緑色縦線2本の表示が現れて、非開通側には白地に赤色の×印が現れるようになっている。
分岐器において基準線から分岐線が分かれる角度については、角度を直接規定する方式と、両線の開きとそれに要する長さの比率に基づいて規定する方式の2種類に大別される。世界的に広く採用されているのは後者の方式で、日本ではこの比率を示す数値について「番数」と称している。分岐器の番数の定義や呼称・表記方法は、国によって次の通り差異がある。
分岐器の番数は、基準線から分岐線が分かれる角度の大小を示すもので、片開き、両開きなどといった分岐器の形状とは無関係に、分岐器に用いられているクロッシング(フログ)の番数を分岐器全体の番数として呼称する[13][14]。クロッシング番数は中心線法を採用し、クロッシング部で接する両軌条の軌間線が成す二等辺三角形の高さ(略図)と底辺(略図)の比をもって示す[14][15][16]。
分岐器類の名称の前に、分岐器で用いているクロッシングの番数を付加し、「8番片開き分岐器」「10番シザーズクロッシング」のように呼称する[13]。クロッシング番数に応じて、クロッシング後方における両方の軌間線[17] の接線がなす角度「クロッシング角」が定められている。曲線分岐器の場合は両方の軌間線の交角[13](クロッシング交点において引いた2本の接線がなす角度[14])をもってクロッシング角とする。
なお、曲線ダイヤモンドクロッシングでは、両方の軌道中心線が交差する角度をクロッシング角と読み換え、それに相応するクロッシング番数を呼称する[13]。シザーズクロッシングでは、使用する分岐器に用いられているクロッシングの番数を呼称する[13]。
かつて「轍叉番号(てっさばんごう)」とも呼ばれた。JIS E 1301で、クロッシング番数およびその角度は次のように規定されている[13]。
クロッシング番数 | クロッシング角 | 備考[14] |
---|---|---|
4番 | 14°18' | 8番クロッシング角の2倍 |
5番 | 11°26' | 10番クロッシング角の2倍 |
6番 | 9°32' | 12番クロッシング角の2倍 |
7番 | 8°10' | 14番クロッシング角の2倍 |
8番 | 7°09' | 計算式により算出 |
9番 | 6°22' | |
10番 | 5°43' | |
12番 | 4°46' | |
14番 | 4°05' | |
16番 | 3°34.5' | 8番クロッシング角の1/2 |
20番 | 2°51.5' | 10番クロッシング角の1/2 |
ドイツにおいて、クロッシング番数 (Herzstückverhältnis) は分子を1とした単位分数を比を用いて示す(8番=1:8)。番数はヨーロッパ標準の直角法を用いている。ドイツ連邦鉄道 (DB) および現在のドイツ鉄道 (DBAG) では、番数を含め次の形式で分岐器類を分類呼称している。
例:EW 60-500-1:12 L Fz H
略号 | 意味 | 略号の例 |
---|---|---|
EW | 分岐器の形式 | 単純分岐 (EW)、外方分岐 (ABW)、内方分岐 (IBW)、複分岐 (DW)、片複分岐 (EinsDW) |
60 | レール種類 | UIC60レール (60)、S49レールb(49 - ドイツ国有鉄道、ドイツ連邦鉄道、ドイツ国営鉄道)、S54レール(54 - ドイツ連邦鉄道)、R65レール(65 - ドイツ国営鉄道) |
500 | 曲線半径 | 分岐線の曲線半径。単位m。 |
1:12 | 番数 | 単位分数で表記する。例では12番。 |
L | 分岐方向 | 左 (L)、右 (R) |
Fz | ポイント部構造 | 弾性トングレール (Fz)、弾性ポイントブレード (Fsch)、ピボット式トングレール (Gz) |
H | 枕木材質 | 木製 (H)、木製のうち広葉樹材 (Hh)、鋼製 (St)、コンクリート (B) |
現在のドイツ鉄道で主に使われている分岐器の例である(分岐器呼称のxxはレール種類に応じた任意の数字が入る)。
単純分岐器 | ノーズ | 許容通過速度 |
---|---|---|
EW xx-190-1:7,5/6,6(分岐半径190m、7.5番/6.5番) | 可動 | 40 km/h |
EW xx-190-1:7,5(分岐半径190m、7.5番) | 可動 | 40 km/h |
EW xx-190-1:9(分岐半径190m、9番) | 固定 | 40 km/h |
EW xx-300-1:9(分岐半径300m、9番) | 可動 | 50 km/h |
EW xx-500-1:12(分岐半径500m、12番) | 可動 | 60 km/h |
EW xx-500-1:14(分岐半径500m、14番) | 固定 | 60 km/h |
EW xx-760-1:14(分岐半径760m、14番) | 可動 | 80 km/h |
EW xx-1200-1:18,5(分岐半径1200m、18.5番) | 可動 | 100 km/h |
EW xx-2500-1:26,5(分岐半径2500m、26.5番) | 可動 | 130 km/h |
曲線分岐器(一例) | ||
ABW xx-215-1:4,8(分岐半径215m、4.8番) | 可動 | 40 km/h |
またICEが運行するマンハイム-シュトゥットガルト高速線およびハノーファー-ヴュルツブルク高速線用に開発された高速分岐器 (Schnellfahrweichen) には次のようなものがある。分岐器呼称末尾の「-fb」は弾性可動ノーズ付きを示す。複心曲線使用の分岐器は分岐線側を異なる半径の曲線を組み合わせたものにしており、EW 60-7000/6000-1:42の場合、トングレール部は半径7000m、分岐器中央部より後方は半径6000mとなっている。
分岐器呼称 | 許容通過速度 基準線側 / 分岐線側 |
---|---|
EW 60-1200-1:18,5-fb(分岐半径1200m、18.5番) | 280 km/h / 100 km/h |
EW 60-2500-1:26,5-fb(分岐半径2500m、26.5番) | 280 km/h / 130 km/h |
複心曲線使用分岐器 | |
EW 60-6000/3700-1:32,5-fb(分岐半径6000m+3700m、32.5番) | 280 km/h / 160 km/h |
EW 60-7000/6000-1:42-fb(分岐半径7000m+6000m、42番) | 280 km/h / 200 km/h |
ドイツ鉄道が開発し1998年に使用を開始したクロソイド分岐器 (Klothoidenweichen) には次のようなものがある。分岐線側の曲線を緩和曲線の一種であるクロソイド曲線として衝動及びレール損耗の低減を図ったもので、EW 60-10000/4000-1:39の場合、トングレール先端を半径10000mとし、分岐器中央部にかけて半径4000mまで曲率が逓増したのち、分岐器後方にかけて再び半径10000mまで曲率が逓減する。この特徴のため、クロッシング部の番数だけでは従来の分岐器と規模を単純に比較できない。
このうち、分岐線側でも220km/hでの通過を可能とした40.15番クロソイド分岐器EW 60-16000/6100-1:40,15-fbはベルリン-ハレ線ビターフェルト駅構内においてハレ方面とライプツィヒ方面の分岐用に2基使用されており、番数は42番高速分岐器EW 60-7000/6000-1:42-fbより小さいものの、分岐器1基の長さは169.2mに達し、ドイツ国内最大の分岐器である。
分岐器呼称 | 許容通過速度 基準線側 / 分岐線側 |
---|---|
EW 60-3000/1500-1:18,5(分岐半径3000m-1500m-3000m、18.5番) | 330 km/h / 100 km/h |
EW 60-4800/2450-1:24,26(分岐半径4800m-2450m-4800m、24.26番) | 330 km/h / 130 km/h |
EW 60-10000/4000-1:39(分岐半径10000m-4000m-10000m、39番) | 330 km/h / 160 km/h |
EW 60-16000/6100-1:40,15(分岐半径16000m-6100m-16000m、40.15番) | 330 km/h / 220 km/h |
1918年にオーストリア帝国鉄道 (kkStB) とハンガリー国家鉄道 (MÁV) を承継したチェコスロバキア時代のチェコスロバキア国鉄 (ČSD) では、1970年代まで、角の長さと開きの比率による番数ではなく、分岐角を直接定める「段階式分岐器」(チェコ語:Soustava stupňových výhybek, スロバキア語:Sústava stupňových výhybiek)を採用していた。概要は次の通りである[19]。
チェコスロバキア国鉄は1970年代、新規格のS49レールおよびR65レールの採用にあたって交差角または分岐角の番数を用いた「比率式分岐器」(チェコ語:Soustava poměrových výhybek, スロバキア語:Sústava pomerových výhybiek)を導入して新設計の分岐器を設定した。現在もチェコ(鉄道施設管理公団)、スロバキア(スロバキア国鉄)両国では、比率式分岐器とそれ以前の段階式分岐器が混在している。
比率式分岐器における番数はヨーロッパ標準の直角法を用いている。単純分岐器の場合、分岐半径300m(許容通過速度50km/h)または分岐半径190m(同40km/h)の1:9(9番)分岐器を標準に、1:12(12番)分岐器、1:14(14番)分岐器を設定。また高速分岐器として許容通過速度100km/hの1:18,5(18.5番)分岐器を設けた。また駅構内用として1:7,5(7.5番)分岐器、側線用として1:6(6番)および1:6,5(6.5番)分岐器を設定した。
現行の比率式分岐器の規格は次の通りである。分岐線曲線半径と許容通過速度については、通過時の横方向加速度が0.65 m/s²を超えないよう定められている。
番数 | 曲線半径 | 許容通過速度 |
---|---|---|
1:6(6番) | 150 m | 30 km/h |
1:7,5(7.5番) | 150 m | 30 km/h |
1:7,5(7.5番) | 190 m | 40 km/h |
1:9(9番) | 190 m | 40 km/h |
1:9(9番) | 300 m | 50 km/h |
1:11(11番) | 300 m | 50 km/h |
1:12(12番) | 500 m | 60 km/h |
1:14(14番) | 760 m | 80 km/h |
1:18,5(18.5番) | 1200 m | 100 km/h |
1:26,5(26.5番) | 2500 m | 120 km/h |
トングレール(分岐器の分岐部分のレール)の後端部継ぎ目部分に遊間(隙間)を設け、ポイント転換の際にトングレール後端部が滑り移動しながら動作するポイントのこと。大正14年型分岐器や側線用分岐器などに使用される。
トングレール(分岐器の分岐部分のレール)の後端部継ぎ目部分に遊間(隙間)を設け、ポイント転換の際にトングレール後端部を中心にして回転するように動作するポイントのこと。50Nレール使用の本線用分岐器など、全国的に最も多く使用されてきたが、トングレール後端部継ぎ目部分での衝撃・損傷が大きいので、主要幹線では次項の弾性ポイントに更換されつつある。
トングレールとリードレールを一体化してトングレールの後端部継ぎ目をなくしたポイントのこと。トングレール後端部レール底面に切り欠きが設けてあり、トングレール全体をたわませて転換する。弾性ポイントを使用した分岐器のことを弾性分岐器と称する。分岐器通過時の振動や騒音が押さえられ、通過速度を向上できる特徴がある(直線側はポイントに由来する速度制限が事実上ない[21])。
新幹線や高速列車の多い路線で多く使用されるが、一般的に他の分岐器より高価となる。在来線では、JR四国予讃線の本山駅に最初に設置され、160 km/hで通過した実績がある。
安全側線に設置される分岐器。乗越トングレールと乗越クロッシングの両方またはどちらか一方が用いられている。信号冒進時に車両を本線から脱線させるため、信号と連動している転轍機で転換する。脱線させる側が定位となっており、脱線後に分岐側から戻る事は考えられていない。
在来線での分岐器の分岐側は、分岐側の曲線半径であるリード半径、分岐器の強度、乗り心地、分岐器の保守などを総合して、安全比率を一般曲線より小さい5.5として、速度制限が決められる。
在来線での分岐器の直線側は、分岐器のクロッシングの強度、トングレールの開口、クロッシング部分のガイドレールおよびウイングレール(翼レール)の背面横圧の限度、保守量の増加などの理由により速度制限があり、高速列車においては直線で最高速度で走行しても分岐器が存在する通過駅では減速を余儀なくされ、「ノコギリ運転」と呼ばれる加速や減速を繰り返していた。これについては改善対策が行われており、枕木の強化、分岐器のレールに使用されるヒールボルトの強化、分岐器の下部に設置されている床板の強化、車輪およびレールの保守限度の見直しにより、従来の制限速度である100 km/hから120 km/hに上げられており、通過駅での減速を無くして表定速度の向上が図られている。
凍結や積雪により分岐器が転換不能になる事態が起きる[24][25]。トングレールの固着やトングレールによる氷雪塊の挟み込みを防ぐため[26]、冬季はポイント部に下や側面から火を当てる融雪器(融雪カンテラ)[27][28]、電熱器を使い凍結や着氷を防ぐことが積雪のほとんど無い地域において行われる。また積雪地では代わりに温水・熱風を用いた融雪装置を設置する[29]。北海道や東北地方のほとんどの駅・信号場では転てつ器部分にカバーをかぶせたり、防雪シェルターで覆ったりしている。北海道新幹線においては融かした雪がほどなくして再度凍ることから空気ジェットによりトングレールに挟まった氷雪を吹き飛ばし、氷雪塊の挟み込みを防いでいる[29]。人による除雪や融雪剤・防氷剤の散布[30]、圧縮空気で吹き飛ばしも行われるが、様々な方式のポイント融雪器が考案された[31][32]。
豪雪地帯や山間部の信号場ではポイントの周囲の軌道ごとスノーシェルターで覆う場合がある。
分岐器のポイント部を操作し、車両の進路を切り替える装置を転てつ器[39](てんてつき)と呼ぶ。"てつ「轍」"の字は常用漢字外[40]であり、転てつ器と表記される。転てつ器のうち、転換を行う機械を転てつ機[41](てんてつき)という。転てつ器には構造・用途による分類と使用動力による分類で以下の区分がある。
電気転てつ機は電気を動力源とする動力転てつ器の1つである。電気指令によって本体内部にある制御リレーと回路制御器が作動し、その後モーターないし空気シリンダーが動作してそれを動力源として切り替える転てつ機で、1箇所で集中制御する際に用いられており、分岐器の開通方向を連動装置等の遠隔装置に出力する。構造としてはレールを切り替える転換部と、分岐器を列車が通過している間に転てつ器が転換しないように鎖錠する転換鎖錠部とで構成されており、前者はモーターからフリクションクラッチ[43] と減速歯車を介して転換ローラーに繋がり、そこから動作桿とスイッチアジャスターロッドとスイッチアジャスタを介してダイバー(転てつ棒)でトングレールに接続されており、後者は転換部からロックピースと鎖錠桿を介して[44] 接続桿に繋がり、それがトングレールの先端にあるフロントロッドに接続されている。また、手動で転換できるように転てつ機本体に手回しハンドル穴があり[45]、手動で完全に転換してその後に鎖錠状態になった時に、手回し完了表示窓に矢印の表示が出るようになっている。電気転てつ機の種類としてはNS形とG形の他、本線以外の側線用にYS形がある。
電空転てつ機は転換する動力に圧搾空気を用いる動力転てつ器である。圧搾空気の配給と制御をする電磁弁、圧搾空気の転てつシリンダ、シリンダのピストンによって動かされる転換鎖錠器、回路制御器等からなる。電空転てつ機を用いる場合は圧搾空気を発生させる設備および各転てつ機に配給する設備が必要であり、多数の転てつ器があるような大構内などに適している。[46]また、電空転てつ機は構内が浸水や降雪の被害をうけやすい駅の場合に、電気転てつ機と比較して有利な点があり[47]、東京地下鉄道丸ノ内線(現:東京メトロ丸ノ内線)建設の際に採用された[48]。
転てつ器を人力で切り替える装置である。主要な転てつ器には転てつ器標識が設置される。転てつ器の開通方向を示すのに標識またはランプを用いるものもある。
留置線や保線用側線など、鎖錠の必要がなく通過車両が比較的軽量かつ低速である場合、ポイントリバーのハンドル自体の重量によりトングレールを押さえつける簡易式のものである。
転てつ転換機は、1組のポイントを転てつリバーにより現場で操作する転換機であり、第1号転てつ転換機と第2号転てつ転換機の2種類がある[52]。 転てつ器標識を設備する場合は、定位で青の円盤、反位で黄色の矢羽根形である。転てつ器が列車通過時の振動で勝手に切り替わることがないようトングレールを固定するロック機構がある(ロック方式は数種類がある)。連動装置の管理下で取り扱われる場合、機械的または電気的な鎖錠装置を持つ。転てつ転換機は信号扱所からてこにより転てつ器を遠隔操作することが原則であることに対し、入れ換え用途など線路脇のてこで操作できる方が有利である場合に採用される。
以下のものは厳密には1線の線路をそれ以上に分岐させず、分岐器ではないが、分岐器の一種として扱われることが多い。
世界的に規格がまちまちであるため複数の方式が使用されている[53]。
日本におけるAGTは、1983年に当時の建設省・運輸省の指導による統一規格「標準型新交通システム」が策定され、案内方式は「側方案内方式」が標準となっている。
このシステムでは水平可動案内板方式による分岐が使用されている。車両側には、各車両下部にある台車から案内バーが左右両側に伸びており、その先の上部にはガイドウェイの案内軌条を走行して転動方向を規制させる案内輪、下部には分岐で進行方向を変えるために使用する分岐案内輪が取付けられている。案内輪は、走行軌道(ガイドウェイ)に沿って両側に設置された、HまたはI形鋼による案内軌条に車両の両側にある案内輪が走行することで、走行中の車両の転動方向を規制して案内する装置であるが、車両が分岐場所を通過する際には案内軌条の一側を離さなくてはならない。地上側の分岐場所には、2つの可動案内板と固定案内板がガイドウェイの両側の案内軌条の下に設置されており、可動案内板が電気転轍器で可動することによって分岐器の役割を果たす。車両は可動案内板に車両側の左右どちらかの分岐案内輪が入り込み、その後、固定案内板を通過することによって車両の進行方向が選択できる。すなわち両側拘束の案内軌条を離れ、一時的に片側のみを拘束することによって分岐するのである。
川崎重工業と開発した独自の規格(S.S.TRAM、札幌方式とも)であり、南北線と東西・東豊線で規格が異なるが、いずれも中央案内軌条方式を採用している。
このため、向きの違う案内軌条2本を浮沈させて進路を決定する「上下式」を中心に、基地内などでは、トラバーサー上に複数の進路の軌条を設定し、トラバーサーを動かして進路を決定する「トラバーサ式」を採用している[54]。
モノレールやHSSTも鉄道に分類され、その線路には分岐がある。
跨座式の場合は、上記までの2本のレールやガイドウェイを使うものに比べると、モノレールの軌道は1本で車両重量全体を支えるために幅が広く重量が大きく、また、その構造上、鉄軌道のそれのように轍を乗せ換える方式ではなく、軌道を繋ぎ変える方式となる。主な方式としては関節式と関節可撓(かとう)式[55] がある。前者は、1つの分岐器を使用して軌道を転轍させる支点よりそのまま曲げる方式で、乗り心地は悪くなってしまう。そのため、本線では使用されず、乗り心地を追及する必要のない、車両基地内や、側線への分岐点で使用される[55][56]。後者はいくつかの短い桁を組み合わせ軌道を転轍する方式で、それぞれの桁は関節で接続されているため、車体の振動が関節式と比較して極力少なくすることができる[55]。また、構造上分岐の形式は通常単純な複数方向への分岐かシングルクロスが多いが、東京モノレール羽田空港第2ターミナル駅のように、ダブルクロッシングを設ける例もある。
常電導リニアの一つである、HSSTでは軌道の設置方式にダブルビーム型とシングルビーム型があるが、現在実用化されているシングルビーム型では、構造上モジュール(台車に相当)が軌道を抱え込む方式となっているため、跨座式モノレールと同様の関節式・もしくは関節可撓式の分岐器が採用されている。
懸垂式の場合は、鉄軌道のトングレールとリードレールに相当するT形断面の可動レール[57] が転轍させる支点を中心に可動して軌道を転轍する方式を採用している。
軌道を曲げるのではなく、定位と反位の軌道を置き換えることで繋ぎ変える方式である。
アメリカ・ニューアーク空港のエアトレインでは反転する軌道台の上下にそれぞれ定位と反位の軌道を設け、回転させることで軌道を切り替える分岐器を採用している[56]。
アメリカのウォルト・ディズニー・ワールド・モノレール・システムでは、扇形の軌道台に定位と反位の軌道を設け、旋回させることで軌道を切り替える分岐器を採用している。扇形の分岐器はALWEG社が1952年に建設したケルン実験線、日本ロッキード・モノレールが1962年に建設した岐阜試験線、1966年開業の姫路市交通局モノレール線の手柄山駅などにも存在した。
案内車輪を誘導するレールを用いる方式の場合、分岐器が必要となる。仏:トランスロール社のトランスロールにおいては、それぞれ分岐器中央部後端よりに支点を持つ2本1組の案内軌条がずれて進路を構成する方式や、跨座式モノレールのようにポイント先端部に支点を持つ一本のレールを繋ぎかえる方式が用いられている。また、クロッシング部ではターンテーブル状の線路を用いて進路を構成する必要がある。
ボンバルディア・トランスポーテ―ションのTVR方式においても同様な分岐器が用いられているが進路でない軌道が一部カバーに隠れる構造となっており、支持方式の構造上クロッシングにターンテーブルは用いられない。
ケーブルカーでは、丁度中間地点で行き違いをすることになるため、その前後に二又を設け、進行方向によって互いに別の側に入るように配線する。左右の車輪の片側は両フランジ車輪、もう片側はフランジなしの厚みのある車輪という特殊な構造を使用することで、分岐器に可動部をなくしたものがよく使われる。
超電導リニア(JRマグレブ)の山梨実験線では、各種方式の試験の結果、モノレールの関節可撓式に類似した「トラバーサ方式」を採用している[58]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.