Loading AI tools
4頂点が1つの円周上にある四角形 ウィキペディアから
円に内接する四角形(えんにないせつするしかっけい、英: cyclic quadrilateral)または単に内接四角形(ないせつしかっけい、英: inscribed quadrilateral)とは、4頂点が1つの円周上にある四角形のことである[1]。この円のことを外接円といい、その上にある4頂点は共円であるという。一般的に、内接四角形は凸であると仮定されるが、四角形が自己交差することを許せば凸でない内接四角形も存在する。以下では凸四角形に限って述べることとする。
すべての三角形が外接円を持つのに対して、すべての四角形が外接円を持つとは限らない。たとえば、正方形でない菱形は内接四角形ではないが、正方形・長方形・等脚台形・反平行四辺形はすべて内接四角形である。凧形が内接四角形となるための必要十分条件は、それが二つの直角を持つことである(直角凧形)。双心四角形は内接四角形であり、かつ外接四角形でもある。傍双心四角形は内接四角形であり、かつ傍接四角形でもある。調和四角形は内接四角形であって対辺の長さの積が等しいものである。
内接四角形の面積 K は、その四辺の長さを a, b, c, d とすれば、ブラーマグプタの公式により と与えられる[5]:24。ここに、s ≔ 1/2(a + b + c + d) は半周長である。これは一般の四角形に対して成立するブレートシュナイダーの公式において、内接四角形の場合に向かい合う角が補角であることを適用した系として得られる。さらに d = 0 であるとすれば、内接四角形は三角形に退化するから、ブラーマグプタの公式もヘロンの公式に退化する。
内接四角形は、各辺がそれぞれ決まった長さの並びであるようなすべての四角形の中で最大の面積を持つ(これもまたブレートシュナイダーの公式の系であるし、微分積分学を用いても証明できる)[8]。
ブラーマグプタの公式を見れば、各辺の長さがどの二つも異なり他の三つの辺の長さの和よりも小さいという条件のもとで、そのような長さの辺を持つ内接四角形は面積が決まれば合同の違いを除いて三種類しかないことが分かる[9]。具体的に言えば、各辺の長さが隣り合う順に a, b, c, d であったときに、長さ a の辺と残りの長さ b, c, d の辺のどれとでもよいから入れ替えるならば、面積は同じで、しかも合同にはならない。
内接四角形の面積は、辺の長さが隣り合う順に a, b, c, d で長さ a および b の辺の成す角度が B であるとき と表せる[5]:25。あるいは二本の対角線の成す角度を θ とすれば である[5]:26。また A が直角でないならば とも書ける[5]:26。
もっと別の形では、外半径を R として、 というものもある[10]:83。すると直ちに がわかるが、ここで等号が成り立つのは考える四角形が正方形のときであり、かつそのときに限る[11]。
内接四角形の頂点が隣り合う順に A, B, C, D であり、各辺の長さを a ≔ AB, b ≔ BC, c ≔ CD, d ≔ DA とするとき、対角線の長さ p ≔ AC, q ≔ BD は辺の長さを用いて と表せる[5]:25[12][13]:84。よって、トレミーの定理 も示せる。同じ設定のもと、トレミーの第二定理に従えば である[5]:25[12]。
対角線の長さの和に関して不等式 が成り立つ[14]:p.123,#2975。ここで等号が成り立つための必要十分条件が、二つの対角線の長さが一致することであるということを、相加相乗平均の関係式を用いて示せる。さらに が成り立つ[14]:p.64,#1639。
任意の凸四角形が二つの対角線によって四つの三角形に分割されるが、内接四角形においてそれら四つの三角形の向かい合う対は互いに相似になる。
二つの対角線 AC, BD の中点をそれぞれ M, N とすれば が成り立つ[15]。ここに点 E, F は向かい合う辺を延長したときにできる交点とする。内接四角形 □ABCD の二辺 AC と BD が E で交わるとすると が成り立つ[16]。
内接四角形を成す辺の集合が一つ与えられれば、それらの並びだけを替えて、外接円と面積を変えることなく、三つの相異なる内接四角形を作ることができる(面積が変わらないことはブラーマグプタの公式からわかる)。そのような内接四角形のどの二つも、ひとつの対角線の長さは共通である[13]:p84。
内接四角形の辺の長さが隣り合う順に a, b, c, d で与えられているものとし、半周長を s と書く。
内接四角形の辺を隣り合う順に a, b, c, d とし、その半周長を s ≔ (a + b + c + d)/2 と書けば、その四角形の外半径(外接円の半径)R は で与えられる[12][18]。これは15世紀のインドの数学者 Vatasseri Parameshvara によって導かれた。
ブラーマグプタの公式を用いれば、上記の公式は と書き直せる。ただし K はこの内接四角形の面積である。
四角形において、一辺に垂直で対辺の中点を通る線分は(「中点からの垂線」の短縮形として)中垂線 (maltitude) と呼ばれる[19]。内接四角形の各辺に引いた四つの中垂線は一点で交わる[20]:p.131[21]。このときの共通交点は反中心 (anticenter) と呼ばれる。反中心は、「頂点重心」の外心に関する鏡像になっているという特徴を持つ点である。したがって、内接四角形では外心、「頂点重心」、反中心は同一直線上にある[21]。
内接四角形のふたつの対角線の交点を P とし、対角線の中点をそれぞれ M, N とするならば、その内接四角形の反中心は三角形 △MNP の垂心に一致する。
ブラーマグプタ (Brahmagupta) の四角形とは、辺の長さおよび対角線の長さが全て整数で面積も整数となる内接四角形をいう[23]。すべてのブラーマグプタの四角形は、その辺の長さを a, b, c, d, 対角線の長さを e,f とし、面積を K, 外半径を R と書けば、有理数の範囲を動くパラメータ t, u, v を用いて書ける以下の公式 から、分母を払う ことで得られる。
内接四角形でなおかつ直交対角線である(つまり二つの対角線が互いに垂直である)ようなものに対し、二つの対角線の交点が一方の対角線を長さ p1 および p2 の線分に分け、他方の対角線を長さ q1 および q2 の線分に分けるものとすると (最初の等号は、アルキメデスの『補題の書』の命題11による)が成り立つ[24]。ここで D は外接円の直径である。これが成り立つのは、二つの対角線が円の弦に垂直であることによる。これらの等式から、外半径 R は と表せることが分かる。これはまた辺の長さを用いて とも書ける[20]。あるいはまた も成り立つ[20]。ゆえに、オイラーの四辺形定理に従えば、外半径は二つの対角線の長さ p, q とそれら対角線の中点間の距離 x を用いて と表せる。
円に内接する直交対角線四角形の面積 K を四辺の長さで表す公式は、トレミーの定理と直交対角線四角形の面積公式を組合わせることで直接的に得られる。それは というものである[25]:222。
球面幾何学において、交わる四つの大円から形作られる球面四角形が内接四角形となるための必要十分条件は、二組の向かい合う角の和が等しい(つまり、隣り合う順に四つの角度が α, β, γ, δ であるとき、α + γ = β + δ となる)ことである[26]。この定理の一つの方向は1786年に I. A. Lexell が示した[27]。(Lexell 1786) では、球の小円に内接する球面四角形において向かい合う角の和が等しいことおよび外接する球面四角形において向かい合う辺の和が等しいことが示されている。この二つの定理について、前者は平面幾何における同様の定理の球面幾何版であり、後者は前者の双対(つまり大円と極点との役割をいれかえたもの)になっている[28]。Kiper らはこの定理の逆「球面四角形において向かい合う辺の長さの和が等しいならば、この球面四角形に内接する円が存在する」を示した[29]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.