Remove ads
ウィキペディアから
ジェルゴンヌ点(ジェルゴンヌてん、Gergonne Point)は、三角形上で一意的に定義される点の1つである。ジョセフ・ジェルゴンヌに由来する。
1818年に発行された、Annales de Math(Annales de Gergonne)1818-9 にこの点についての記述がある[1]。
三角形ABCの内接円が辺BC,AC,AB と接する点をそれぞれ X,Y,Z とする。AX,BY,CZ の3つの線の交点がジェルゴンヌ点となる。
ジェルゴンヌ点のチェバ三角形XYZはジェルゴンヌ三角形、または接触三角形(intouch triangle,contact triangle)と呼ばれる。また、ジェルゴンヌ三角形と元の三角形の配景の軸をジェルゴンヌ線と言う[3]。ジェルゴンヌ線とソディ線は直交する。
YZ,ZX,XYに平行でジェルゴンヌ点を通る直線をそれぞれl,m,nとする。lとAB、lとAC、mとBA、mとBC、nとCA、nとCBの交点は共円である。この円をアダムス円と言う[4][5]。アダムス円の中心は内心である。アダムス円の半径は以下の式で表される。
ここでsは半周長、rは内接円の半径、pはab+bc+caである。この6点を辺上に持つもう1つの三角形の類似重心、第一ルモワーヌ円はそれぞれ元の三角形のジェルゴンヌ点、アダムス円となる。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.