Loading AI tools
ウィキペディアから
数学の一分野である複素解析において、アメーバ(英: amoeba)は、一変数、あるいは多変数の多項式に関連した集合である。アメーバは代数幾何学、特に、トロピカル幾何学へ応用を持っている。
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
ユークリッド空間 上に値を持つ 0 を除く複素数 n-組 の集合上に定義され、式
により与えられる函数
を考える。ここに 'log' は、自然対数を表す。p(z) が 変数の多項式であれば、そのアメーバ(amoeba) は p の零点の集合の Log による像として定義される。
アメーバは 1994年、イズライル・ゲルファント(Israel Gelfand)、カプラノフ(Kapranov)、アンドレイ・ゼレヴィンスキー(Andrei Zelevinsky)の書籍[1]で導入された。
アメーバを研究する有効なツールが、ロンキン函数(Ronkin function)である。n (複素)変数の多項式 p(z) に対し、式
により、ロンキン函数を、
と定義する。ここに は を表す。同じことであるが、 は積分
により与えられる。ここに
とする。ロンキン函数は凸函数であり、 のアメーバの補集合の各々の連結成分上ではアフィン(affine)である[3]。
例として、 である単項式
のロンキン函数は、
である。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.