Loading AI tools
光の代わりに電子をあてて拡大する顕微鏡 ウィキペディアから
電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて像を得るのに対し、光の代わりに電子(電子線)を用いる顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。
光学顕微鏡の接眼部にCCDイメージセンサと液晶ディスプレイを設置した物を「電子顕微鏡」と称している場合があるが、本項では記述しない。
電子顕微鏡には、大きく分けて下記の2種類がある
透過型電子顕微鏡 (Transmission Electron Microscope; TEM)は観察対象に電子線をあて、それを透過してきた電子線を拡大して観察する顕微鏡。対象の構造や構成成分の違いにより、どのくらい電子線を透過させるかが異なるので、場所により透過してきた電子の密度が変わり、これが顕微鏡像となる。電磁コイルを用いて透過電子線を拡大し、電子線により光る蛍光板にあてて観察したり、フィルムやCCDカメラで写真を撮影する。観察対象を透かして観察することになるため、試料をできるだけ薄く切ったり、電子を透過するフィルムの上に塗りつけたりして観察する。
走査型電子顕微鏡 (Scanning Electron Microscope; SEM)は観察対象に電子線をあて、そこから反射してきた電子(または二次電子)から得られる像を観察する顕微鏡。走査型の名は、対象に電子線を当てる位置を少しずつずらしてスキャン(走査)しながら顕微鏡像が形づくられることから。電子は検出器に集められ、コンピュータを用いて2次元の像が表示される。
また、両者の特徴を合わせ持つ走査型透過電子顕微鏡 (Scanning Transmission Electron Microscope; STEM) も近年注目されつつある。
磁場の電子線に対するレンズ作用を実験で示したのは1927年ドイツのハンス・ブシュ(Hans Busch) である。最初の電子顕微鏡 (TEM) は1931年にベルリン工科大学のマックス・クノールとエルンスト・ルスカが開発した。さらにルスカは性能を高め、この功績で1986年にノーベル物理学賞を受賞した。シーメンスの科学ディレクターだったユダヤ系ドイツ人のレインホールド・ルーデンベルク(en:Reinhold Rudenberg)が1931年、特許をとり、1938年に電子顕微鏡を売り出す。走査型電子顕微鏡 (SEM) は1937年マンフレート・フォン・アルデンヌ (Manfred von Ardenne) によって製作された。1950年代から多くの分野で活用された。さらに短波長の電子線(加速電圧の向上)などによって性能は向上した。
日本においては、1940年に菅田榮治(大阪大学)が初めて国産第一号、倍率一万倍の電子顕微鏡を完成させている。瀬藤象二が国産化のための技術開発に貢献した[1]。また、1951年には日比忠俊が蒸着材料に金やウラン以外の金属を利用し、より鮮明な画像を得る試料作製手法を開発した[2]。
生物学の分野では、電子顕微鏡の利用は大きな影響を与えた。ウイルスの発見や、細胞小器官の構造など、得られたものは大きい。この分野で電子顕微鏡によって観察できるような微細な構造のことを微細構造 (Ultrastructure) という。 また、材料学においても転位や積層欠陥等材料の特性を決定する欠陥構造の解明、カーボンナノチューブをはじめとするナノ構造材料の発見と構造解析におおきな役割をはたしてきた。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.