Cuticola (botanica)
strato protettivo sulla parete esterna delle piante Da Wikipedia, l'enciclopedia libera
La cuticola, in botanica, è uno strato di materiale idrofobico, composto da cere e da cutina (polimero di acidi grassi saturi e insaturi), che ricopre l'epidermide di foglie, giovani germogli e altri organi aerei della pianta erbacei con funzione protettiva.[1]

La cuticola è prodotta esclusivamente dalle cellule epidermiche ed è uno strato non cellulare deposto sulla parete cellulare. Nelle cellule vegetali adulte e differenziate la parete può subire varie modificazioni per aggiunta di sostanze diverse che possono depositarsi dentro la parete o, come nel caso della cuticola, all’esterno della parete.
Caratteristiche

La cuticola è composta da uno strato extracellulare insolubile impregnato e ricoperto da cere solubili.
La cutina, il principale componente della cuticola, è un polimero poliestere composto da acidi idrossilati omega esterificati che sono reticolati da legami estere ed epossidici[2].
Lo spessore della cuticola varia a seconda dei climi in cui vive la pianta. La cellula, essendo coperta di cuticola solo sulla faccia esterna, può ricevere acqua e nutrimento dalle cellule vicine e quindi rimanere vitale.
La cuticola della pianta fa parte di una serie di innovazioni, insieme agli stomi, ai tessuti vascolari, e agli spazi intercellulari nel fusto e nel tessuto fotosintetico delle foglie, che le piante hanno sviluppato più di 450 milioni di anni fa durante il passaggio dalla vita nell'acqua alla vita sulla terra[3] Insieme, queste caratteristiche hanno consentito alle piante di esplorare ambienti non sommersi in quanto consentivano di conservare l’acqua racchiudendola in una membrana impermeabile.
Funzioni
- La funzione primaria della cuticola è quella di impedire l'evaporazione dell'acqua dalla superficie della pianta. La cuticola conferisce impermeabilità all'acqua e, in minor misura, ai gas atmosferici.
- Oltre alla funzione di barriera di permeabilità per l'acqua, la micro e nanostruttura della cuticola conferisce proprietà superficiali specializzate (la forma tagliente delle cere cristalline o la sua scivolosità) che impediscono ai patogeni (come per esempio batteri e funghi ma anche insetti) di danneggiare la pianta. Gli esseri umani hanno studiato le proprietà della cuticola e le hanno utilizzate per costruire materiali tecnici biomimetici. Un esempio tipico è l'effetto loto ovvero l'utilizzo delle proprietà ultra-idrofobiche e autopulenti delle foglie del loto (Nelumbo nucifera) che sono state descritte da Barthlott e Neinhuis[4] nel 1997 per costruire materiali autopulenti.
Biosintesi delle cere cuticolari
Riepilogo
Prospettiva
È noto che le cere cuticolari sono in gran parte formata da composti che derivano da acidi grassi a catena molto lunga (very-long-chain fatty acids o VLCFA), come aldeidi, alcoli, alcani, chetoni ed esteri. Sono presenti anche altri composti, originati da percorsi biosintetici diversi, che non sono derivati dei VLCFA, come terpenoidi, flavonoidi e steroli.[5].
Il primo passo della via di biosintesi per la formazione di VLCFA cuticolari, avviene con la biosintesi ex novo delle catene aciliche C16 (palmitato) da parte dei cloroplasti nel mesofillo[6], e si conclude con l'estensione di queste catene nel reticolo endoplasmatico delle cellule dell'epidermide[7]. Un importante catalizzatore che si ritiene sia presente in questo processo è il complesso dell'elongasi degli acidi grassi (FAE)[5][8].
Per formare i componenti della cera cuticolare, i VLCFA vengono modificati attraverso due percorsi: un percorso di riduzione dell'acile o un percorso di decarbonilazione (ovvero una reazione organica, opposta a quella di carbonilazione, in cui si verifica la perdita di un gruppo carbonilico presente in una molecola). Nella via di riduzione dell'acile, una reduttasi converte i VLCFA in alcoli primari, che possono quindi essere convertiti in esteri attraverso un enzima specifico. Nel percorso di decarbonilazione, le aldeidi vengono prodotte e decarbonilate per formare alcani e possono essere successivamente ossidate per formare alcoli e chetoni secondari. Il percorso di biosintesi termina con il trasporto dei componenti delle cere dal reticolo endoplasmatico alla superficie epidermica.
Note
Altri progetti
Collegamenti esterni
Wikiwand - on
Seamless Wikipedia browsing. On steroids.