Algebra omologica
branca della matematica Da Wikipedia, l'enciclopedia libera
branca della matematica Da Wikipedia, l'enciclopedia libera
L'algebra omologica è la branca della matematica che studia i metodi dell'omologia e della coomologia da un punto di vista generale. Questi concetti sono nati nell'ambito della topologia algebrica.
Le teorie di coomologia sono state definite per vari oggetti matematici quali spazi topologici, fasci, gruppi, anelli, algebre di Lie e C*algebre. Anche lo studio della moderna geometria algebrica non può fare a meno della coomologia dei fasci.
Centrale per l'algebra omologica è la nozione di successione esatta; questi sono gli oggetti attualmente utilizzati per effettuare i calcoli. Un altro genere di strumento classico dell'algebra omologica è il funtore derivato; gli esempi basilari di questi funtori sono Ext e Tor.
Dopo un primo periodo nel quale l'algebra omologica si è dimostrata utile in un'ampia gamma di applicazioni, vi sono stati vari successivi sforzi di astrazione per poterla collocare in una posizione più astratta su una base uniforme. Si può individuare uno spostamento dalla computabilità alla generalità che, a grandi linee, si sviluppa in tre stadi fondazionali.
Lo strumento computazionale per eccellenza dell'algebra omologica è la successione spettrale; questi oggetti sono essenziali negli approcci di Cartan-Eilenberg e "Tohoku": essi sono necessari, in particolare, per calcolare i funtori derivati di una composizione di due funtori dati. Le successioni spettrali sono meno essenziali nell'approccio delle categorie derivate, ma ancora giocano un ruolo importante ogniqualvolta si rende necessario un calcolo concreto.
Va ricordato anche che vi sono stati tentativi di 'teorie non commutative' che possano estendere la prima coomologia come i torsori (importanti nella coomologia di Galois).
Controllo di autorità | Thesaurus BNCF 57082 · LCCN (EN) sh85003432 · GND (DE) 4160598-6 · BNF (FR) cb119792439 (data) · J9U (EN, HE) 987007293932705171 · NDL (EN, JA) 00563392 |
---|
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.