Loading AI tools
concetto in algebra lineare Da Wikipedia, l'enciclopedia libera
In algebra lineare e analisi funzionale, una proiezione è una trasformazione lineare definita da uno spazio vettoriale in sé stesso (endomorfismo) che è idempotente, cioè tale per cui : applicare due volte la trasformazione fornisce lo stesso risultato che applicandola una volta sola (dunque l'immagine rimane inalterata).
Nonostante la definizione sia piuttosto astratta, si tratta di un concetto matematico simile (e in qualche modo legato) alla proiezione cartografica.
In uno spazio euclideo, come ad esempio il piano cartesiano o lo spazio tridimensionale, una proiezione ortogonale su un determinato sottospazio (ad esempio, una retta o un piano) è una funzione che sposta ogni punto dello spazio su un punto di lungo una direzione perpendicolare ad .
Ad esempio, la proiezione del piano cartesiano sull'asse delle ascisse è la funzione:
e la proiezione sulle ordinate è la funzione
Se è un sottospazio vettoriale -dimensionale dello spazio euclideo , la proiezione ortogonale su è definita ponendo:
una base ortonormale per lo spazio euclideo, i cui primi vettori sono una base per . Scrivendo i vettori attraverso i vettori delle loro coordinate rispetto alla base , la proiezione su è la funzione:
In modo equivalente, se e sono vettori di e il prodotto scalare standard, si definisce proiezione di lungo il vettore , dove il numero:
è detto coefficiente di Fourier. I vettori e sono allora perpendicolari.[1]
Un endomorfismo di uno spazio vettoriale è un operatore di proiezione se è idempotente, cioè se . Gli endomorfismi definiti sopra quindi sono tutti proiezioni.
Analogamente, una matrice quadrata è una matrice di proiezione se (dove si fa uso del prodotto fra matrici). Ad esempio:
è una matrice di proiezione.
Questa nozione è strettamente collegata a quella di operatore di proiezione, poiché ogni matrice rappresenta un endomorfismo di . In particolare, la appena descritta rappresenta la proiezione ortogonale sul piano orizzontale :
Le matrici seguenti rappresentano proiezioni ortogonali del piano su una retta:
La matrice seguente rappresenta una proiezione non ortogonale sulla retta delle ascisse:
Se sono operatori o matrici di proiezione, valgono le proprietà seguenti:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.